

Fachhochschule Aachen

Campus Jülich

Fachbereich 3 Chemie und Biotechnologie Studiengang Angewandte Chemie

Bachelorarbeit

Elektrolytische Wasserdesinfektion mittels Natriumchlorid

Name:

Matr.-Nr.:

Janine Händler 865632

> 05.August.2015 Jülich

Erklärung

Diese Arbeit ist von mir selbstständig angefertigt und verfasst. Es sind keine anderen als die angegebenen Quellen und Hilfsmittel benutzt worden.

Janine Händler

Ort, Datum

Diese Arbeit wurde betreut von:1.Prüfer:Prof. Dr. Günter Jakob Lauth2.Prüfer:Prof. Dr. Franz Prielmeier

Inhalt

1	Einl	eitun	eitung6			
2	The	oretis	ische Grundlagen			
	2.1 <i>Ohm</i> sches Gesetz			7		
	2.2	Leit	âhigkeit	7		
	2.2.	1	Leitwert	9		
	2.2.	2	Spezifische Leitfähigkeit	9		
	2.2.	3	Molare und äquivalente Leitfähigkeit	10		
	2.2.	4	Starke Elektrolyte	10		
	2.2.	5	Schwache Elektrolyte	11		
	2.3	Galv	anisches Element	12		
	2.4	Elek	trolyse	15		
	2.4.	1	Elektrodenarten	17		
	2.4.	2	Zersetzungsspannung	23		
	2.4.	3	Überspannung	24		
	2.4.	4	Passivierung von Elektroden	31		
	2.5	Нур	ochloritnachweis	32		
	2.6	Graț	ohit	33		
	2.7	Chlo	oralkalielektrolyse	34		
	2.7.1 2.7.2		Chloralkalielektrolyse gestern			
			Chloralkalielektrolyse heute	40		
	2.7.	3	Chloralkalielektrolyse morgen	41		
3 Praktische Durchfü		ctisch	e Durchführung	42		
	3.1	Verv	vendeten Chemikalien	42		
	3.2	Verv	vendeten Geräte	43		
	3.3	Vers	uchsdurchführung	44		
3.3.1		1	Herstellung der verwendeten Lösungen	44		
	3.3.	2	Versuchsdurchführung der Stromstärke in Abhängigkeit der Spannung	46		
	3.3.	3	Versuchsdurchführung zur Haltbarkeit der Graphitelektroden	51		
4	Disl	cussic	on der Ergebnisse	52		
	4.1	Elek	trodenreaktionen	52		
	4.2	Abh	ängigkeit der Stromstärke von der Spannung	54		
	4.2.	1	Abhängigkeit von der Eintauchtiefe	54		
	4.2.	2	Abhängigkeit von den Elektrodenarten	61		
	4.2.	3	Abhängigkeit von der Konzentration	66		
	4.2.	4	Abhängigkeit von der Rührfischgeschwindigkeit	69		
	4.2.5		Haltbarkeit der Graphitelektroden	71		

5	Zusammenfassung	74
6	Ausblick	75
Anhang		
	Abkürzungsverzeichnis	
	Gleichungsverzeichnis	
	Abbildungsverzeichnis	80
	Tabellenverzeichnis	
	Messwerttabellen	
	Messwerttabellen zu Kapitel 4.2.1	
	Messwerttabellen zu Kapitel 4.2.2	
	Messwerttabellen zu Kapitel 4.2.3	
	Messwerttabellen zu Kapitel 4.2.4	
	Messwerttabellen zu Kapitel 4.2.5	
	Tabellen und Diagramme	
	Tabellen und Diagramme zu Kapitel 4.2.1	
	Tabellen und Diagramme zu Kapitel 4.2.2	
	Tabellen und Diagramme zu Kapitel 4.2.3	
	Tabellen und Diagramme zu Kapitel 4.2.4	
	Tabellen und Diagramme zu Kapitel 4.2.5	
	Literaturverzeichnis	

1 Einleitung

1 Einleitung

Die Elektrolyse einer wässrigen Natriumchloridlösung ist schon lange eine bekannte Möglichkeit um Chlor, Wasserstoff und Natronlauge herzustellen. Dabei wirken die Elektroden nicht nur durch ihre Beschaffenheit, sondern auch durch ihre Eintauchtiefe auf die Elektrolyse ein.

Auch wird die Elektrolyse einer Steinsalzlösung heutzutage zur Desinfektion von größeren Wassermengen z.B.in Schwimmbädern genutzt.

Diese Bachelorarbeit beschäftigt sich vor allem mit den Einflüssen der Elektroden auf die Elektrolyse, sowie den Einfluss der Konzentration. Hierbei werden verschiedene Metalle als Kathode und unterschiedliche Härtegrade einer Graphitelektrode als Anode miteinander verglichen.

Den Anstoß eine Bachelorarbeit in diesem Bereich zu schreiben, gab die Restaurierung des Monschauer Vennbads, indem seit der Wiedereröffnung statt der Reinigung mit Chlor, die Elektrolyse einer wässrigen Natriumchloridlösung zur Desinfektion genutzt wird.

6

2 Theoretische Grundlagen

2 Theoretische Grundlagen

In den folgenden Kapiteln werden die theoretischen Grundlagen, die für das bessere Verständnis der Ausarbeitung nötig sind, erläutert.

2.1 Ohmsches Gesetz

Elektrischer Strom wird über zwei verschiedene Parameter klassifiziert und zwar über die Spannung (U) und die Stromstärke (I). Das Verhältnis der beiden Größen gibt das *Ohm*sche Gesetz (Gl. 2-1) wieder, welches besagt, dass die Spannung sich direkt proportional zur Stromstärke verhält, wenn der Strom durch einen *Ohm*schen Widerstand (R) fließt (1) (2).

$$U = R * I$$
Gl. 2-1

Wenn man die Stromstärke in Abhängigkeit der Spannung aufträgt, erhält man eine Gerade mit einer Steigung, die dem Kehrwert des Widerstands entspricht (Gl. 2-2) (Abbildung 2-1) (2) (1).

$$R = \frac{U}{I} = \frac{1}{m}$$
Gl. 2-2

Abbildung 2-1: Darstellung der Abhängigkeit der Stromstärke von der Spannung

2.2 Leitfähigkeit

Die Leitfähigkeit einer Lösung ist ein Maß für die Fähigkeit von Elektrolyten, Ladung im elektrischen Feld durch die Lösung mittels solvatisierter Ionen zu transportieren. Hierbei werden die solvatisierten Ionen mit der Ladung z^*e_0 im elektrischen Feld mittels der elektrischen Feldstärke (\vec{E}) beschleunigt ($\vec{F_{elek.}}$)(Gl. 2-3) (3) (4) (5) (1) (6).

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

$$\vec{F}_{elek.} = z * e_0 * \vec{E}$$

Allerdings werden sie durch die Reibung mit Lösemittelmolekülen abgebremst. Diese Reibung bezeichnet man als *Stokes*sche Reibungskraft $(\vec{K_R})$ (Gl. 2-4) (4) (5) (1).

$$\vec{K}_{R} = 6 * \pi * \eta * r_{i} * \vec{v}$$
Gl. 2-4

Dabei spielt die Viskosität (η), die Geschwindigkeit (\vec{v}) und der Radius des solvatisierten Ions (r_i) eine Rolle.

Nachdem die Ionen anfänglich an Geschwindigkeit zunehmen, gelangen sie schnell in einen Gleichgewichtszustand, in dem Reibung und Beschleunigung gleich groß sind (Gl. 2-5), weshalb die Ionen nicht weiter beschleunigt werden und ihre maximale Geschwindigkeit (\vec{v}_{max}) erreicht haben(Gl. 2-6) (4) (5) (1).

$$\overrightarrow{K_R} = \overrightarrow{F}_{elek.}$$
Gl. 2-5

$$\vec{v}_{max} = \frac{z * e_0 * \vec{E}}{6 * \pi * \eta * r_i}$$
Gl. 2-6

Diese maximale Transportgeschwindigkeit ist für jede Ionensorte eine charakteristische Größe und hängt neben der elektrischen Feldstärke auch von der Viskosität (η) der Lösung und damit indirekt auch von der Temperatur ab.

In welche Richtung die Ionen wandern, hängt hierbei vom Ladungsvorzeichen ab. Ist dieses positiv wandert es zur negativ geladenen Elektrode und umgekehrt. Hierbei kommt es zur Ausbildung einer elektrolytischen Doppelschicht, wenn an die Elektroden eine Gleichspannung angelegt wird, da es an den Elektroden zum Zuwachs der entgegengesetzt geladenen Ionen kommt (Abbildung 2-2) (4) (5).

Elektrolytische Doppelschicht

Dadurch entstehen bei einer Gleichspannung neben der, wie ein *Ohm*scher Widerstand wirkenden Elektrolytlösung, 2 Phasengrenzen an den beiden Elektroden, die wie ein nicht *Ohm*scher Widerstand wirken. Diese sind mit der Elektrolytlösung in Reihe geschaltet. Das Entstehen einer elektrolytischen Doppelschicht wird durch das Anlegen einer Wechselspannung vermieden, wodurch der Widerstand der Lösung direkt gemessen werden kann. (4) (1) (5)

2.2.1 Leitwert

Der durch den Elektrolyten transportierte Strom verhält sich dabei proportional zur angelegten Feldstärke, wodurch man den Leitwert (L) einer Lösung definieren kann, da er der Kehrwert des *Ohm*schen Widerstands der Lösung ist (Gl. 2-7) (5) (4) (6) (3).

$$L = \frac{1}{R} = \frac{I}{U}$$
Gl. 2-7

Er hängt neben der Ionensorte und ihrer Konzentration (c) auch von der Viskosität (η), der Temperatur (T), dem Elektrodenabstand (l) und von der Querschnittfläche der Elektroden (A) ab. Der Leitwert des Elektrolyten setzt sich hierbei aus dem Leitwert des Kations (L⁺) und Anions (L⁻) zusammen (Gl. 2-8) (5) (4).

 $L = L^+ + L^-$ Gl.

2.2.2 Spezifische Leitfähigkeit

Da der Leitwert von dem Abstand und dem Elektrodenquerschnitt abhängt, wurde die spezifische Leitfähigkeit (κ), als Leitwert eines Würfels mit der Kantenlänge 1 cm definiert (Gl. 2-9). Dadurch verhält sich die spezifische Leitfähigkeit einer Elektrolytlösung unabhängig von Abstand und Elektrodenquerschnitt (5) (1) (7) (4) (6) (3).

$$\kappa = \frac{l}{A}L$$
Gl. 2-9

Die spezifische Leitfähigkeit ist hierbei stark von der Konzentration, der in Lösung gegangenen Elektrolyten abhängig, was sich bei idealem Verhalten der Elektrolyten als lineare Funktion darstellen lässt (Abbildung 2-3) (5) (3).

Abbildung 2-3: Leitfähigkeit wässriger Elektrolytlösungen bei 18°C (Elektrochemie S. 20 Abb. 2-8)

Dies gelingt allerdings nur in stark verdünnten Lösungen. Aufgrund dessen hat man neben der spezifischen Leitfähigkeit, auch noch die molare und die äquivalente Leitfähigkeit definiert. (5) (3)

Gl. 2-8

2.2.3 Molare und äquivalente Leitfähigkeit

Die molare Leitfähigkeit (Λ_m) ist die auf die Elektrolytkonzentration (c) bezogene spezifische Leitfähigkeit (Gl. 2-10) (7) (4) (5) (1) (6) (3).

$$A_m = \frac{\kappa}{c}$$
 Gl. 2-10

Bezieht man die molare Leitfähigkeit nun auf die Anzahl der positiven bzw. negativen Ladungen der Ionen pro Formeleinheit (n_e) (z.B. bei NaCl n_e= 1; bei H₂SO₄n_e= 2), so erhält man die äquivalente Leitfähigkeit (Λ_{eq}) des Elektrolyten (Gl. 2-11) (7) (4) (5) (1) (6) (3).

$$\Lambda_{eq} = \frac{\Lambda_m}{n_e}$$
Gl. 2-11

2.2.4 Starke Elektrolyte

Starke Elektrolyte dissoziieren vollständig in wässriger Lösung, weshalb die Ionenkonzentration direkt proportional zur Elektrolytkonzentration verläuft. Im Idealfall würden sich alle Ionen unabhängig voneinander bewegen. Dieses ist aber nur in stark verdünnten Lösungen der Fall, da es bei höheren Konzentrationen vermehrt zur Ausbildung der *Coulomb*kräfte kommt. Aufgrund dessen stehen die Ionen stärker in Wechselwirkung mit den umgebenden Ionen. Dieses zeigt sich, wenn man die äquivalente Leitfähigkeit gegen die Quadratwurzel der Konzentration aufträgt (Abbildung 2-4) (7) (5) (1).

Abbildung 2-4: Abhängigkeit der Äquivalentleitfähigkeit verschiedener wässriger Elektrolytlösungen bei 25°C von $\sqrt{c_{(eq)}}$ ((5) S.23, Abb. 2-10)

Hierbei fällt auf, dass es bei steigender Konzentration immer weiter zu einer Abweichung vom Idealzustand kommt, der eine Unabhängigkeit der Äquivalentleitfähigkeit von der Konzentration wäre. Dieses liegt daran, dass es zur Bildung von Assoziaten aus geladenen Ionen aufgrund der *Coulomb* Kraft kommt. Diese verhalten sich nach außen wie ein Neutralteilchen und zeigen deshalb keinen Anteil am Ladungstransport und führen somit zu einer Abweichung vom Idealverhalten. Dieses führt dazu, dass sowohl die molare als auch die äquivalente Leitfähigkeit nicht mehr konzentrationsunabhängig sind. Dieses Verhalten wird durch das *Kohlrausch* Gesetz (Gl. 2-12) beschrieben (4) (7) (5) (1).

$$\Lambda_m = \Lambda_\infty - K_K \sqrt{c}$$
Gl. 2-12

Es beschreibt die lineare Abhängigkeit von der Wurzel der Stoffmengenkonzentration(Abbildung 2-4). Die Grenzleitfähigkeit (Λ_{∞}) beschreibt hierbei die molare Leitfähigkeit bei unendlich großer Verdünnung des Elektrolyten, welche sich aus der Summe der Grenzleitfähigkeit des Kations (λ_{∞}^{+}) und des Anions (λ_{∞}^{-}) zusammensetzt (Gl. 2-13) (5) (1).

$$\Lambda_{\infty} = \lambda_{\infty}^{+} + \lambda_{\infty}^{-}$$
Gl. 2-13

Der Koeffizient K_K beschreibt die Steigung, wobei er stärker von der Art des Elektrolyten (z.B. MeA oder Me₂A) abhängt als von den Ionen selber. Er steigt je größer die Anzahl der Ionen pro Formeleinheit bzw. die Ladung der Ionen ist, da dadurch der Anstieg der *Coulomb* Kraft pro Formeleinheit stärker ausgeprägt ist, weil die Ionen größere Wechselwirkungen miteinander eingehen können (5) (7) (1).

2.2.5 Schwache Elektrolyte

Schwache Elektrolyte dissoziieren nicht vollständig in einer wässrigen Lösung, wobei sich im Laufe der Zeit ein Gleichgewicht zwischen nicht dissoziiertem und dissoziiertem Anteil einstellt (Gl. 2-14). Hierdurch wird die Ionenkonzentration stark vom Dissoziationsgrad und somit von der Gleichgewichtskonstante (K) abhängig. Daraus folgt, dass auch die molare Leitfähigkeit stark abhängig von der Konzentration des Elektrolyten ist (5) (1) (7) (4).

$$Me_x A_y \rightleftharpoons x Me^{\frac{n_e}{x^+}} + y A^{\frac{n_e}{y^-}}$$
 Gl. 2-14

Hierbei kommt es zu einer Hyperbel beim Auftragen der molaren Leitfähigkeit gegen die Quadratwurzel der Elektrolytkonzentration, die bei starken Elektrolyten eine Gerade bildet (Abbildung 2-4 CH₃COOH) (5).

Die molare Leitfähigkeit kann man errechnen, indem man die Grenzleitfähigkeit des Elektrolyten mit dem dissoziierten Anteil (α) multipliziert (Gl. 2-15). Dadurch kann man die Gleichgewichtskonstante des Elektrolyten mittels des *Ostwald*schen Verdünnungsgesetzes bestimmen (Gl. 2-16) (5) (1) (4).

$$\Lambda_m = \alpha * \Lambda_\infty$$
Gl. 2-15

$$K = \frac{c * \alpha^2}{1 - \alpha} = \frac{\Lambda_m^2 * c}{\Lambda_\infty * (\Lambda_\infty - \Lambda_m)}$$
Gl. 2-16

Dadurch wird deutlich, dass bei schwachen Elektrolyten die molare und somit auch die äquivalente Leitfähigkeit der Elektrolytlösung stark von der Konzentration des Elektrolyten abhängig ist und sich nicht wie im Idealfall konstant verhält (5).

2.3 Galvanisches Element

Ein galvanisches Element ist ein freiwillig ablaufender Redoxprozess, bei dem Oxidation und Reduktion räumlich voneinander getrennt ablaufen. Diese sind mittels elektrischer Leiter miteinander verbunden. Hierbei kommt es zum Fließen von elektrischem Strom von der negativen Anode zur positiven Kathode, der genutzt werden kann. So ist z.B. der Bleiakkumulator, den man auch als Autobatterie kennt, ein galvanisches Element, welches wir zur Erzeugung von elektrischem Strom nutzen (1) (5) (8) (6) (3).

Der allgemeine Aufbau eines galvanischen Elements ist in Abbildung 2-5 dargestellt.

Ein galvanisches Element besteht aus zwei Halbzellen. Diese bestehen aus je einer Elektrode, die mittels eines elektrischen Leiters erster Art miteinander verbunden sind. Die Elektroden tauchen in die jeweilige Elektrolytlösung ein. Um den Stromkreis zu schließen, müssen diese entweder mit einem Salzschlüssel oder durch eine Membran miteinander verbunden sein, wenn die Elektroden nicht in ein und dieselbe Lösung eintauchen (5) (1) (8) (6).

Die Wirkungsweise eines galvanischen Elements wird im Folgenden am Beispiel des *Daniell*-Elements erklärt, da es sehr anschaulich ist (Abbildung 2-6) (5) (1) (6).

Abbildung 2-6: Schematischer Aufbau des Daniell-Elements

Beim *Daniell*-Element handelt es sich um eine Kupferelektrode, die in eine Cu^{2+} Lösung eintaucht und eine Zinkelektrode, die in eine Zn²⁺ Lösung eintaucht. Wenn man nun den Stromkreis durch eine Salzbrücke und einen äußeren Leiter schließt und z.B. eine Glühlampe in den äußeren Stromkreis zwischenschaltet, beginnt diese zu leuchten.

Bei Zink handelt es sich um ein unedles Metall, was bedeutet, dass es einen relativ hohen Elektronendruck besitzt, da Zink die Elektronen nicht so stark bindet. Daraufhin kommt es an der Zinkelektrode, die als Anode fungiert, zur Oxidation. Dabei gibt das elementar vorliegende Zink zwei Elektronen ab und wird zu Zn^{2+} , welches in Lösung geht (Gl. 2-17) (1) (6).

$$Zn_{(s)} \rightarrow Zn_{(aq)}^{2+} + 2e^{-}$$
 Gl. 2-17

Die dadurch freigewordenen Elektronen wandern nun durch den äußeren Leiter zur Kupferelektrode, die die Kathode darstellt. An der Kupferelektrode sammeln sich nun negative Ladungen an, zu der die positiven Kupferkationen wandern. Dort reagieren sie mit den Elektronen mittels Reduktion zu elementarem Kupfer, welches sich an der Elektrode absetzt (Gl. 2-18) (1) (6).

$$Cu_{(aq)}^{2+} + 2e^- \rightarrow Cu_{(s)}$$
Gl. 2-18

Dadurch kommt es in der Kupferlösung zur Verarmung an Kationen und in der Zinklösung zu einer Kationenanreicherung. Um dieses auszugleichen, kann man entweder eine Salzbrücke verwenden, bei der die Kationen in die Lösung des Kathodenraumes wandern und die Anionen in den Anodenraum. Oder man verbindet beide Halbzellen mit einer Membran, durch die die Anionen wandern können, um so einen Ladungsausgleich zu erreichen.

Ein galvanisches Element kann, wie eingangs schon erwähnt, nur dann entstehen, wenn die beiden Halbzellen zusammen eine freiwillig ablaufende Redoxreaktion bilden. Um dieses zu berechnen, benutzt man die elektromotorische Kraft (EMK). Diese macht eine Aussage über die freie Enthalpie und somit über die Freiwilligkeit der Reaktion (Gl. 2-19) (5) (1) (8) (6).

$$EMK = -\frac{\Delta_R G}{\nu_e * F}$$
Gl. 2-19

Dadurch wird gezeigt, dass ein galvanisches Element eine Möglichkeit bietet, die freie Enthalpie einer chemischen Reaktion in elektrische Energie umzuwandeln, um sie somit für uns nutzbar zu machen. Ist die freie Enthalpie negativ, so besagt dies, dass die Reaktion freiwillig vonstatten geht. Daraus kann man schließen, dass die EMK aufgrund der Vorzeichenänderung positiv sein muss, damit ein galvanisches Element entstehen kann. Die EMK berechnet sich aus den Einzelpotentialen der beiden Halbzellen (Gl. 2-20) und gibt die entstehende Spannung an, die durch das galvanische Element erzeugt wird. Die messbare Stromstärke hingegen ist ein Maß für die umgesetzte Stoffmenge durch die einzelnen Teilreaktionen der Redoxreaktion (Gl. 2-24) (5) (1) (8) (6) (3).

$$EMK = E_{Kathode} - E_{Anode}$$
 Gl. 2-20

Die Einzelpotentiale der Halbzellen und somit der Redoxpaare berechnen sich dabei durch die *Nernst*-Gleichung (Gl. 2-21) (5) (1) (6) (3).

$$E_{(Red/Ox)} = E_{(Red/Ox)}^{o} + \frac{R * T}{v_e * F} ln \frac{[Ox]}{[Red]}$$
Gl. 2-21

Das Standardpotential (E_0) gibt dabei das Potential des Redoxpaares bei Standardbedingungen (Tabelle 2-1) an (1) (5).

Tabelle 2-1: Standardbedingungen

T in K	p in bar	a in mol/L
298,15	1	1

T Temperatur; p Druck; a Aktivität

Das Potential der Halbzelle ist hierbei neben der Temperatur auch von den Aktivitäten der Reaktionsteilnehmer abhängig. Für den Einfluss von Ionen in Lösung wird in der *Nernst*-Gleichung anstatt der Aktivität (a) vereinfacht die Stoffmengenkonzentration (c) verwendet. Bei Gasen wird der Partialdruck (p) verwendet und bei Feststoffen, die an der Reaktion teilnehmen wird eine Aktivität von 1 festgelegt, da sie keine Abweichung vom Standardpotential hervorrufen (5) (1).

2 Theoretische Grundlagen

2.4 Elektrolyse

Die Elektrolyse ist im Gegensatz zu der galvanischen Zelle, eine erzwungene Redoxreaktion. Sie wird durch das Einbringen von Energie in Form von elektrischem Strom erzwungen. Mit ihr können Reaktionen, die ohne Energiezufuhr nicht ablaufen würden, durchgeführt werden. Der grundlegende Aufbau einer Elektrolyse (Abbildung 2-7) ähnelt sehr der des galvanischen Elements (5) (1) (8) (6) (3).

Abbildung 2-7: Schematischer Aufbau einer Elektrolysezelle

Eine Elektrolysezelle besteht aus zwei Teilzellen mit je einer Elektrode. Auch müssen sie wie bei dem galvanischen Element mit einem Leiter erster Art verbunden sein. Damit die Reaktion erfolgen kann, muss bei der Elektrolyse eine Stromquelle angeschlossen werden. Die Schließung des Stromkreises erfolgt auf dieselbe Weise wie bei der galvanischen Zelle, entweder mit einem Salzschlüssel, einer Membran oder durch das Eintauchen beider Elektroden in dieselbe Lösung. Somit kann man ein galvanisches Element wie z.B. das *Daniell*-Element, durch das Zwischenschalten einer Stromquelle dazu bringen in entgegengesetzter Richtung zu reagieren (5) (8) (6) (3).

Bei einer Elektrolyse entzieht die Stromquelle der Anode Elektronen, wodurch diese positiv geladen wird, und schiebt sie zur Kathode, die dadurch negativ geladen wird. Aufgrund des Entzugs der Elektronen an der Anode kommt es dort zu einem Zwang, der zur Oxidation führt. Wenn man hier das Beispiel des umgekehrten *Daniell*-Elements nimmt (Abbildung 2-8), bedeutet das, dass die Kupferelektrode als Anode positiv gepolt wird (5) (6).

Abbildung 2-8: Schematischer Aufbau der Elektrolyse eines Daniell-Elements

Durch das Entziehen der Elektronen kommt es zur Oxidation des Kupfers, wodurch sich Kupferionen bilden, die in Lösung gehen (Gl. 2-22).

$$Cu_{(s)} \to Cu_{(ag)}^{2+} + 2e^{-}$$
 Gl. 2-22

Zu der negativ gepolten Kathode werden die Elektronen von der Stromquelle transportiert, wodurch ein Elektronenüberschuss entsteht und somit der Zwang zur Reduktion. In unserem Beispiel ist das die Zinkelektrode, wo nun eine Reduktion von den Zinkionen zu elementarem Zink erfolgt (Gl. 2-23) (5).

$$Zn_{(aq)}^{2+} + 2e^- \rightarrow Zn_{(s)}$$
Gl. 2-23

Welche Menge eines Produkts durch das Anlegen einer ausreichenden Spannung in einem festgelegten angegeben Zeitraum entsteht, lässt sich mit Hilfe des *Faradayschen* Gesetzes berechnen (Gl. 2-24) (1) (5) (3).

$$m = \frac{I * t * M}{v_e * F}$$
Gl. 2-24

Es beschreibt die Abhängigkeit der entstehenden Produktmasse (m) einer Komponente von der Zeit (t), der Stromstärke (I), der molaren Masse des Produkts (M) und der Anzahl der aufgenommenen bzw. abgegebenen Elektronen pro Formeleinheit des Produkts (v_e) unter Zuhilfenahme der *Faraday*-Konstante (F=96485 As/mol) (5) (1) (3).

2.4.1 Elektrodenarten

Es gibt viele verschiedene Arten von Elektroden, die sich in gewissem Rahmen in ihren Eigenschaften unterscheiden. Neben den Elektroden erster und zweiter Art, werden anschließend auch die Redoxelektrode und die Gaselektrode erläutert. Die verschiedenen Elektrodenarten finden nicht nur bei galvanischen Elementen, sondern auch bei der Elektrolyse Anwendung.

2.4.1.1 Elektroden erster Art

Eine Elektrode erster Art bezeichnet eine Elektrode, die aus einem Metall besteht und in eine Lösung eintaucht, in der Metallionen desselben Metalls frei, das heißt in nicht komplexierter Form, vorliegen. Dadurch ergibt sich das Redoxpaar aus Metall und Metallion (Abbildung 2-9), wie man es z.B. beim bereits erwähnten *Daniell*-Element findet (1) (5) (3).

Abbildung 2-9: Schematische Darstellung einer Elektrode erster Art mit dem Redoxpaar Kupfer/Kupfer(II)ionen

Die stattfindende Reaktion in einer galvanischen Zelle mit Elektroden erster Art kann man durch das Anlegen einer Spannung rückgängig machen. Daraus folgt, dass die Elektrodenreaktion (Gl. 2-25) reversibel ist. Die Elektrodenreaktion besteht somit aus dem Entladen des Metallions an der Elektrodenoberfläche aus der Lösung und umgekehrt. Die gesamte Übertragung des Stroms von der Elektrode auf die Lösung erfolgt somit ausschließlich über die Entstehung bzw. die Entladung der Metallionen. Das Potential der Elektrode lässt sich mit der Konzentrationsänderung des Metallions verändern, was durch die *Nernst*-Gleichung berechnet werden kann(Gl. 2-21). Diese kann man in diesen Fall vereinfachen, da man die Aktivität des Metalls gleich eins setzten kann, da es sich um einen Feststoff handelt (Gl. 2-26) (1) (5) (3).

$$Me_{(aq)}^{v_e^+} + v_e e^- \rightleftharpoons Me_{(s)}$$
 Gl. 2-25

$$E_{(Me/Me^{v_e+})} = E_{(Me/Me^{v_e+})}^o + \frac{R*T}{v_e*F} ln \frac{[Me^{v_e+}]}{[Me]} = E_{(Me/Me^{v_e+})}^o + \frac{R*T}{v_e*F} ln[Me^{v_e+}]$$
Gl. 2-26

2.4.1.2 Elektrode zweiter Art

Elektroden zweiter Art sind ebenfalls aus einem Metall, das, anders als bei Elektroden erster Art, mit einem schwerlöslichen Salz beschichtet ist, welches das Metallion beinhaltet. Diese Schicht ist durchlässig für die Metallionen, nicht aber für die Anionen oder Elektronen. Deshalb geht der Ladungstransport auch hier ausschließlich durch die Metallionen vonstatten. Diese Elektrode taucht in eine Elektrolytlösung mit den Anionen des schwerlöslichen Salzes ein. Dadurch ist das Potential der Elektrode nicht nur von der Konzentration des Metallions, sondern indirekt auch von der Konzentration des zugehörigen Anions abhängig. Dies liegt daran, dass es sich hierbei um eine gesättigte Lösung handelt (Gl. 2-27) (1) (5) (3).

$$aA_{(aq)}^{b+} + bB_{(aq)}^{a-} \rightleftharpoons A_a B_{b(s)}$$

Gl. 2-27

Somit ist die freie Kationenkonzentration des Metallions über das Löslichkeitsprodukt mit der Anionenkonzentration verbunden. Ein Beispiel für eine Elektrode zweiter Art ist eine Silberelektrode, die mit Silberchlorid beschichtet ist und in eine chloridhaltige Lösung eintaucht (Abbildung 2-10) (1) (5) (3).

Schematische Darstellung einer Elektrode zweiter Art am Beispiel einer Silberchloridelektrode

Die Elekrodenreaktion ohne Fällung lautet wie folgt (Gl. 2-28) (5).

$$Ag_{(s)} \rightleftharpoons Ag_{eg}^+ + e^-$$
 Gl. 2-28

Bei Elektroden zweiter Art kann man das Potential durch Erhöhung der Menge des schwerlöslichen Salzes oder durch Hinzufügung einer Metallsalzlösung nicht direkt beeinflussen, da es dabei zum Ausfällen des schwerlöslichen Salzes kommen würde(Gl. 2-29) (1) (5) (3).

$$Ag^+_{(aq)} + Cl^-_{(aq)} \rightleftharpoons AgCl_s$$

Dieses liegt daran, dass der Elektrodenreaktion eine sich im Löslichkeitsgleichgewicht befindliche Fällungsreaktion oder Lösungsreaktion folgt. Somit spielt das Löslichkeitsprodukt (L_{AaBb}) (Gl. 2-30)

Gl. 2-29

für das Potenzial der Elektrode eine Rolle, da es die Konzentration der Metallionen beeinflusst, in unseren Beispiel die der Silberionen (Gl. 2-31) (1) (5) (3).

$$L_{A_aB_b} = [A^{b+}]^a * [B^{a-}]^b$$
Gl. 2-30

$$L_{AgCl} = [Ag^+] * [Cl^-]$$
 Gl. 2-31

Die Konzentration der Metallionen errechnet man bei einer gesättigten Lösung über das Löslichkeitsprodukt (Gl. 2-32) (5) (3).

$$[A^{b+}] = \sqrt[a]{\frac{L_{A_a B_b}}{[B^{a+}]^b}}$$
Gl. 2-32

Das Ergebnis setzt man dann in die vereinfachte *Nernst*-Gleichung (Gl. 2-26) ein (Gl. 2-33), wodurch man die Abhängigkeit des Potentials der Elektrode zweiter Art von der Konzentration des Anions des schwerlöslichen Salzes, erhält (1) (5) (3).

$$E_{(Me/Me^{v_{e^+}})} = E_{(Me/Me^{v_{e^+}})}^o + \frac{R*T}{v_{e^*F}} ln \sqrt[a]{\frac{L_{Me_aB_b}}{[B^{a_+}]^b}}$$
Gl. 2-33

Für unser Beispiel bedeutet das, dass das Potential der Elektrode immer größer wird, je kleiner die Chloridkonzentration ist (Gl. 2-34).

$$E_{(Ag/AgCl)} = E_{(Ag/AgCl)}^{o} + \frac{R*T}{v_e*F} ln \frac{L_{AgCl}}{[Cl^{-}]}$$
Gl. 2-34

Dies zeigt, dass das Potential einer Elektrode zweiter Art über die Konzentration des Anions beeinflusst werden kann. Da es sich hierbei um schwerlösliche Salze handelt und die Konzentration des Anions in solchen Zellen sehr hoch ist, ist die Metallionenkonzentration nahezu konstant. Aus diesem Grund liefern Elektroden zweiter Art bei hoher Anionenkonzentration ein als konstant annehmbares Potential, weshalb sie häufig als Referenzelektroden benutzt werden. Elektroden zweiter Art kann man somit gut zur Potentialmessung einer Halbzelle verwenden, da ihr Beitrag zur EMK konstant ist (1) (5) (3).

2.4.1.3 Redoxelektrode

Redoxelektroden bestehen aus einer Elektrode, die inert gegenüber der Lösung ist, in die sie eintaucht. Das Material aus dem die Elektrode besteht, nimmt nicht an der Redoxreaktion teil, die für das Potential der Halbzelle verantwortlich ist. Aus diesem Grund wird sie theoretisch nicht verbraucht. Ein oft verwendetes Material von Redoxelektroden ist Platin. Die im Redoxgleichgewicht stehenden Reaktionsteilnehmer (S_{Ox} und S_{Red}) liegen bei dieser Elektrodenart alle in der Lösung vor. Die verschiedenen Ionen werden hierbei durch Zugabe bzw. Abgabe von Elektronen ineinander umgewandelt (Gl. 2-35), wobei die Elektrode die Aufgabe eines Elektronendonators bzw. Elektronenakzeptors einnimmt (1) (5) (3).

$$S_{Ox(aq)} + v_e e^- \rightleftharpoons S_{Red(aq)}$$
 Gl. 2-35

Ein Beispiel für ein Redoxpaar, das mit einem Platindraht eine Redoxelektrode bilden kann, ist eine Elektrolytlösung, die sowohl Fe^{2+} wie auch Fe^{3+} Ionen enthält. Die Ionen werden hierbei ineinander umgewandelt (Gl. 2-36) (1) (5) (3).

$$Fe^{3+}_{(aq)} + e^- \rightleftharpoons Fe^{2+}_{(aq)}$$
 Gl. 2-36

Der Aufbau einer solchen Elektrode ist in Abbildung 2-11 dargestellt (5).

Im Gegensatz zu den bereits erklärten Elektrodenarten findet der Ladungstransport hier zwischen den Phasen nicht über die Metallionen statt, sondern über Elektronen, die allerdings nicht frei in der Lösung vorliegen. Durch das Herstellen einer solchen Halbzelle und das Anlegen einer Spannung oder das Zusammenschalten mit einer geeigneten zweiten Halbzelle zu einem galvanischen Element, kommt es zur Ausbildung eines elektrochemischen Gleichgewichts. In diesem Gleichgewicht stehen die an der Redoxreaktion teilnehmenden Ionen. Wenn man nun auf eine Redoxelektrode die *Nernst*-Gleichung anwendet, ist ersichtlich, dass das Potential von den an der Reaktion teilnehmenden Ionen abhängt (Gl. 2-37). In unserem Beispiel von der Fe²⁺ und Fe³⁺ Aktivität und ihrer Stoffmengenkonzentration (Gl. 2-38) (1) (5) (3).

$$E_{(S_{Red}/S_{Ox})} = E_{(S_{Red}/S_{Ox})}^{o} + \frac{R*T}{v_e*F} ln \frac{[S_{Ox}]}{[S_{Red}]}$$
Gl. 2-37

$$E_{(Fe^{2+}/Fe^{3+})} = E_{(Fe^{2+}/Fe^{3+})}^{o} + \frac{R*T}{v_{e}*F} ln \frac{[Fe^{3+}]}{[Fe^{2+}]}$$
Gl. 2-38

Bei der Betrachtung der *Nernst*-Gleichung fällt auf, dass wenn die Aktivität der oxidierten Spezies ($[S_{Ox}]$) gegen null läuft, theoretisch das Potential der Elektrode gegen - ∞ laufen müsste. Außerdem müsste das Potential theoretisch ∞ betragen, wenn die Aktivität der reduzierten Spezies ($[S_{Red}]$) null wäre. In der Praxis ist dieses jedoch nicht zu beobachten, da Nebenreaktionen dieses verhindern. Im erwähnten Beispiel kommt es zu folgender Reaktion bei zu hoher Fe²⁺ Konzentration (Gl. 2-39) (5).

$$Fe_{(aq)}^{2+} + H_2 O \rightarrow Fe_{(aq)}^{3+} + OH_{(aq)}^{-} + \frac{1}{2}H_2$$
 Gl. 2-39

Bei dieser Elektrodenart können allerdings auch mehr als zwei Reaktionspartner an der Reaktion teilnehmen. Es gibt Reaktionen, bei der eine Vielzahl an Substanzen in einem bestimmten stöchiometrischen Verhältnis zueinander, eine bestimmte Anzahl an Elektronen aufnehmen können, um daraufhin eine Anzahl an reduzierten Spezies zu bilden (Gl. 2-40) (1) (5) (3).

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

$$n_1 S_{1 \ Ox(aq)} + n_2 S_{2 \ Ox(aq)} + \dots + v_e e^- \rightleftharpoons m_1 S_{1 \ Red(aq)} + m_2 S_{2 \ Red(aq)} + \dots \qquad \text{Gl. 2-40}$$

Hierbei nehmen nicht alle an der Reaktion beteiligten Substanzen Elektronen auf oder geben sie ab. Sie können z.B. auch als neue Bindungspartner fungieren. Ein Beispiel eines komplexeren Redoxpaares beschreibt folgende Reaktion (Gl. 2-41) (5) (3).

$$MnO_{4(aq)}^{-} + 8H_3O_{(aq)}^{+} + 5e^{-} \rightleftharpoons Mn_{(aq)}^{2+} + 12H_2O$$
 Gl. 2-41

Die auf eine solche Reaktion angewendete *Nernst*-Gleichung (Gl. 2-42) zeigt, dass das Potential von allen Reaktionspartnern abhängt (5).

$$E_{(Red/Ox)} = E_{(Red/Ox)}^{o} + \frac{R*T}{v_e*F} ln \frac{[S_{1\,Ox}]^{n_1} * [S_{2\,Ox}]^{n_2} * \dots}{[S_{1\,Red}]^{m_1} * [S_{2\,Red}]^{m_2} * \dots}$$
Gl. 2-42

Dabei gehen die stöchiometrischen Faktoren, die zu der wandernden Elektronenzahl in Beziehung stehen, als Exponent der Aktivität der Substanzen ein. Dadurch ist sichtbar, dass nicht alle Reaktionsteilnehmer den gleichen Einfluss auf das Potential der Reaktion über ihre Aktivität besitzen. In unserem Beispiel wird in der *Nernst*-Gleichung deutlich (Gl. 2-43), dass die Reaktion sehr pH-Wert empfindlich ist, da die Aktivität der H_3O^+ Ionen mit den Exponenten acht versehen ist. Bei dem Lösemittel handelt es sich um Wasser, deshalb wird die Aktivität des Wassers gleich eins gesetzt und hat keinen Einfluss auf das Potenzial (1) (5).

$$E_{(Mn^{2+}/MnO_{4}^{-})} = E_{(Mn^{2+}/MnO_{4}^{-})}^{o} + \frac{R*T}{5*F} ln \frac{[MnO_{4}^{-}]*[H_{3}O^{+}]^{8}}{[Mn^{2+}]*[H_{2}O]^{4}} = E_{(Mn^{2+}/MnO_{4}^{-})}^{o} + \frac{R*T}{5*F} ln \frac{[MnO_{4}^{-}]*[H_{3}O^{+}]^{8}}{[Mn^{2+}]}$$
Gl. 2-43

Die pH-Wert-Abhängigkeit dieser Reaktion ist hinreichend aus der praktischen Manganometrie bekannt, wo man die starke Oxidationskraft der Permanganationen im stark sauren Milieu nutzt. Über die *Nernst*-Gleichung kann man somit auch erklären, warum die Oxidationskraft des Permanganats mit steigendem pH-Wert stark abnimmt (5).

2.4.1.4 Gaselektrode

Die Gaselektrode ähnelt in ihrem Verhalten stark der Redoxelektrode. Bei ihr kommt ebenfalls eine inerte Elektrode zum Einsatz, die als Elektronendonator oder Elektronenakzeptor fungiert. Auch hier wird häufig Platin verwendet. Die Elektrode taucht in eine Elektrolytlösung ein und wird im Gegensatz zur Redoxelektrode gleichzeitig von einem Gas umspült. Das Typische einer Gaselektrode ist, dass einer der Reaktionspartner des potentialerzeugenden Prozesses ein Gas ist. Der Reaktionsverlauf ist fast genauso wie bei der Redoxelektrode (Gl. 2-44) (1) (5) (3).

$$S_{Ox(aq)} + v_e e^- \rightleftharpoons S_{Red(g)}$$

Gl. 2-44

Das Gas kann sowohl eine reduzierte als auch eine oxidierte Spezies sein. Ein Beispiel dafür ist die Wasserstoffelektrode (Abbildung 2-12) (1) (5).

Abbildung 2-12: Schematische Darstellung einer Wasserstoffelektrode

Hierbei bilden Wasserstoff- und Oxoniumionen ein Redoxpaar, das im Gleichgewicht steht (Gl. 2-45).

$$2H_3O^+_{(aq)} + 2e^- \rightleftharpoons H_2 + 2H_2O$$
 Gl. 2-45

Hier gilt ebenfalls die *Nernst*-Gleichung in der Form, wie sie auch bei der Redoxelektrode eingesetzt wird (Gl. 2-46).

$$E_{(S_{Red}/S_{Ox})} = E^{o}_{(S_{Red}/S_{Ox})} + \frac{R*T}{v_{e}*F} ln \frac{[S_{Ox}]}{[S_{Red}]}$$
Gl. 2-46

Für die Wasserstoffelektrode lautet sie wie folgt (Gl. 2-47).

$$E_{(H_2/H_3O^+)} = E_{(H_2/H_3O^+)}^o + \frac{R*T}{2*F} ln \frac{[H_3O^+]^2}{[H_2]} = E_{(H_2/H_3O^+)}^o + \frac{R*T}{2*F} ln \frac{[H_3O^+]^2}{p(H_2)}$$
Gl. 2-47

Die Aktivität des Gases wird dabei über den Partialdruck des Gases ausgedrückt, weshalb man die Aktivität durch den Partialdruck ersetzen kann (1) (5).

2.4.2 Zersetzungsspannung

Wenn man zwei Halbzellen miteinander verbindet und dabei eine äußere Gleichspannung, auch Klemmspannung (U_{Kl}) genannt, anlegt, kommt es bei niedriger Spannung nicht zu einer Elektrolyse. Eine Elektrolyse findet erst dann statt, wenn die Zersetzungsspannung (U_Z) von der Klemmspannung überschritten wird. Zeichnet man die Abhängigkeit der Stromstärke (I) von der Klemmspannung auf (Abbildung 2-13), so stellt man fest, dass am Anfang die Erhöhung der Klemmspannung zu keiner merklichen Veränderung der Stromstärke führt (1) (5) (6) (3).

Abbildung 2-13: Schematische Darstellung der Abhängigkeit der Stromstärke von der Klemmspannung bei einer Elektrolyse

Erst ab einem gewissen Schwellenwert der Zersetzungsspannung, kommt es zum deutlichen Anstieg der Stromstärke bei steigender Klemmspannung. Die Steigung (m) der Geraden, in die die Kurve übergeht, ist mit dem Innenwiderstand (R_i) der Lösung verknüpft (Gl. 2-48) (5).

$$m = \frac{1}{R_i}$$
Gl. 2-48

Der Innenwiderstand ist wie bereits erwähnt verknüpft mit der Leitfähigkeit der Elektrolytlösung, wobei der Innenwiderstand einen *Ohm*schen Widerstand bezeichnet. Aufgrund dessen gilt das *Ohm*sche Gesetz für die Elektrolyse in abgewandelter Form (Gl. 2-49) (5).

$$U_{Kl} - U_Z = R_i * I$$
Gl. 2-49

Ist die Klemmspannung kleiner oder gleich der Zersetzungsspannung, fließt trotz angelegter Spannung kein Strom. Dies liegt daran, dass die angelegte Spannung durch eine entgegengesetzt betragsmäßig gleichgroße Spannung kompensiert und somit aufgehoben wird (1).

Diese entgegengesetzte Spannung ist die EMK des entstandenen galvanischen Elements. Das erklärt sich damit, dass beim Anlegen einer äußeren Spannung ein kurzer Stromfluss entsteht, der schnell wieder auf null absinkt. Die durch den Stromfluss entstandenen Redoxpartner bilden eine galvanische Zelle und wirken mit ihrer EMK der Klemmspannung entgegen. Deshalb kommt es nur dann zur Elektrolyse, wenn diese entgegengesetzte Spannung nicht weiter steigen kann und somit überschritten wird. Die Zersetzungsspannung hat in der Regel einen Wert von 1 bis 4 V (5).

2.4.3 Überspannung

Bei einer Elektrolyse ist die rechnerisch ermittelte Zersetzungsspannung (ΔE) (Gl. 2-50) in der Regel nicht ausreichend, um eine Elektrolyse herbeizuführen (1) (5) (8) (6) (3).

$$\Delta E = E_{Anode} - E_{Kathode}$$

Die Potenziale berechnet man hierbei wie auch bei der Galvanischen Zelle über die *Nernst*-Gleichung (Gl. 2-21).

Die rechnerisch ermittelte theoretische Zersetzungsspannung setzt sich aus der Differenz der Potentiale der Halbzellen zusammen. Die Differenz der nötigen Klemmspannung, der Zersetzungsspannung und der rechnerisch ermittelten theoretischen Zersetzungsspannung nennt man auch Überspannung (η) (Gl. 2-51) (1) (5) (8) (6).

$$U_Z = \Delta E^o + \eta \tag{Gl. 2-51}$$

Die Überspannung setzt sich dabei aus der Überspannung der Anode und der Kathode zusammen (Gl. 2-52) (1) (5).

$$\eta = \eta_{Anode} - \eta_{Kathode}$$

Sie ist vor allem bei der Entstehung von Gasen deutlich erkennbar. Es gibt viele verschiedene Ursachen für eine Überspannung, die in den folgenden Unterkapiteln ausführlich beschrieben werden. Die Überspannung kann sich dabei aus der Migrationsüberspannung, der Durchtrittsüberspannung, der Diffusionsüberspannung und der Reaktionsüberspannung zusammensetzen. In besonderen Fällen kann auch eine Kristallisationsüberspannung eine Rolle spielen, die aber hier nicht weiter erläutert werden soll (1) (5).

Die Überspannung ist dabei nicht nur von dem Redoxpaar, sondern auch von dem Elektrodenmaterial, der Elektrodenoberfläche und der Stromdichte abhängig. Dabei verringert eine kleinere Stromdichte, sprich eine geringere Stromstärke bei identischer Elektrode, die Überspannung. Eine Elektrolyse ohne Überspannung ist nicht möglich, allerdings ist bei Metallabscheidungen die Überspannung sehr gering, weshalb sie in der Regel vernachlässigbar klein ist. Bei Gasen ist sie, wie bereits erwähnt, höher und liegt in einer Größenordnung von 0 V bis 1 V (5) (3).

2.4.3.1 Migrationsüberspannung

Da die Elektroden über Kabel miteinander verbunden sind und die Verbindungen und die Kontaktstellen z.B. zwischen Kabel und Elektroden einen elektrischen Widerstand besitzen, muss eine höhere Klemmspannung angelegt werden, um diese zu überwinden. Diese zusätzlich erforderliche Spannung und somit Abweichung vom berechneten Wert, nennt man Migrationsüberspannung. Sie tritt dabei unabhängig von den Elektrodenreaktionen auf. Allerdings ist ihr Beitrag zu der Gesamtüberspannung in der Regel nur sehr gering und kann durch Optimierung vermindert werden (1).

Gl. 2-50

Gl. 2-52

2.4.3.2 Durchtrittsüberspannung

Die Durchtrittsreaktion einer Elektrode bezeichnet das Herauslösen eines Metalls aus seinem Metallverband und das Entstehen der Hydrathülle des entstehenden Ions, wobei es durch die elektrolytische Doppelschicht wandert. Für beide Vorgänge wird eine Aktivierungsenergie benötigt, die durch das Anlegen einer höheren Spannung aufgebracht wird. Die Aktivierungsenergie hängt dabei vom Potential der Elektrode ab (Abbildung 2-14) (5) (1) (3).

Je größer dabei die Überspannung ist, desto geringer ist die Reaktionsgeschwindigkeit, da weniger Ladungsträger durch die elektrolytische Doppelschicht gelangen und dort reagieren können, weil weniger die benötigte Energiemenge besitzen. Dabei steigt die Aktivierungsenergie, je höher die Spannung ist, da diese Einfluss auf das elektrische Feld hat. Die Durchtrittsüberspannung (η_{Durch}) hat hierbei ihre Ursache in der endlichen Geschwindigkeit des Transports der Ladungsträger durch die elektrolytische Doppelschicht der Elektrode und somit durch die Phasengrenze zwischen der Elektrode und dem Ionenleiter. Die Durchtrittsgeschwindigkeit ist neben der Art, der an der Elektrodenreaktion beteiligten Spezies, auch noch von dem Elektrokatalysator, der Elektrodeneigenschaft und dem Verhältnis der Elektrolyten in der Lösung abhängig.

An der Phasengrenze herrscht, solange kein äußerer erkennbarer Strom fließt, aber eine Spannung anliegt, ein dynamisches Gleichgewicht (Gl. 2-53) (1) (5) (3).

$$S_{Ox} + ne^- \rightleftharpoons S_{Red}$$

Gl. 2-53

Im Gleichgewicht wandern Ladungsträger in beide Richtungen und die Reaktion läuft in beide Richtungen gleich schnell ab, wodurch keine messbare Massenänderung entsteht. Der durch die anodische Reaktion transportierte Teilstrom wird auch anodischer Teilstrom genannt und hat eine eigene anodische Teilstromdichte (i_+). Die kathodische Teilstromdichte ($i_.$) ist die Dichte des von der kathodischen Reaktion hervorgerufenen Teilstroms. Da im Gleichgewicht beide Stromdichten und somit Teilströme betragsmäßig gleich groß sind, ist nach außen hin kein Stromfluss messbar. Der Betrag der beiden Teilströme im Gleichgewicht bezeichnet man als Austauschstromdichte (i_0). In diesem Fall herrscht keine Durchtrittsüberspannung. Erhöht man nun die Spannung, kommt es zur Entstehung der Überspannung. Durch die Änderung der Spannung werden die Energien der geladenen Teilchen sowohl in der Lösung als auch in der Elektrode verändert, weshalb es zu einer Beschleunigung der einen und zur Hemmung der entgegengesetzten Teilreaktion kommt. Dadurch entstehen zwei unterschiedlich große Teilströme, die einen äußeren, messbaren Stromfluss verursachen.

Die Teilstromdichten sind dabei von der Überspannung abhängig (Abbildung 2-15) (1) (5) (3).

Abbildung 2-15: Abhängigkeit der Teilstromdichten von der Überspannung bei einem Symmetriefaktor von 0,5

Wenn man davon ausgeht, dass die Überspannung in diesen Fall nur von der Durchtrittsüberspannung abhängt, ist das Verhalten der Teilstromdichten abhängig von der Austauchstromdichte (i_0) und dem Symmetriefaktor (α). Hierbei ist der Symmetriefaktor ein Indiz dafür, in welchem Bereich der elektrolytischen Doppelschicht der Übergangszustand gebildet wird. Ist dieser gleich eins, bedeutet das, dass der Übergangszustand ungeladen ist (ausgehend davon, das es sich um eine Metall/Metallionenelektrode handelt). Besitzt er den Wert null, so ist der Übergangszustand mit der gesamten Ladung, die übergeht, geladen. Beträgt der Symmetriefaktor 0,5, bedeutet das, dass die Abhängigkeit der anionischen und kationischen Teilstromdichte zueinander symmetrisch sind (Abbildung 2-15). Je größer er ist, desto steiler verläuft der Graph der anionischen zur kationischen Teilstromdichte(Abbildung 2-16) (1) (5) (3).

Abbildung 2-16:

Abhängigkeit der Teilstromdichten von der Überspannung bei einem Symmetriefaktor größer als 0,5

Wird er kleiner, ist der Verlauf umgekehrt. Die Austauschstromdichte stellt hierbei eine abhängige Größe zu der Konzentration der Elektrolyten dar, die an der Reaktion teilnehmen, und der Aktivierungsenthalpie. Sie ist ein Maß dafür, wie schnell sich das bereits erwähnte Gleichgewicht einstellt. Die messbare Stromdichte resultiert dabei aus der Addition der beiden Teilstromdichten (Gl. 2-54), weshalb diese auch abhängig ist von der Überspannung (Abbildung 2-17) (1) (5) (3).

$$i = i_{+} + i_{-}$$

Gl. 2-54

Abbildung 2-17: Abhängigkeit der Stromdichte von der Überspannung

Diese Abhängigkeit wird durch die Butler-Volmer-Gleichung beschrieben (Gl. 2-55).

$$i = i_0 * \left(e^{\frac{(1-\alpha)*v_e*\eta_{Durch}*F}{R*T}} - e^{-\frac{\alpha*v_e*\eta_{Durch}*F}{R*T}}\right)$$
Gl. 2-55

Die Steilheit, der daraus resultierenden Kurve ist abhängig von der Austauschstromdichte (Abbildung 2-18). Sie gibt an, in welchem Maß die Elektrode polarisierbar ist. Sprich inwieweit die entstehenden Produkte den Stromfluss beeinflussen (1) (5) (3).

Abbildung 2-18: Abhängigkeit der Stromdichte von der Überspannung und der Polarisierbarkeit der Elektrode

Bei nur sehr geringer Überspannung kommt es zu einer linearen Beziehung zwischen der Stromdichte und der Überspannung (Abbildung 2-19) (5).

Abbildung 2-19: Linearer Bereich der Abhängigkeit der Stromdichte von der Überspannung

Dieser Bereich wird auch *Ohm*scher Bereich genannt und ist unabhängig von dem Symmetriefaktor. Im *Ohm*schen Bereich kann man den Durchtrittswiderstand (R_{Durch}) ermitteln (Gl. 2-56) (1) (5).

$$R_{Durch} = \frac{\eta_{Durch}}{i} = \frac{R * T}{v_e * F * i_0}$$
Gl. 2-56

Wählt man eine halblogarithmische Auftragung der Stromdichte zur Überspannung (Abbildung 2-20), kommt es jeweils zu einer Geraden bei der anodischen und kathodischen Teilstromdichte (1) (5).

Abbildung 2-20: Schematische Darstellung der *Tafel*geraden

Diese Geraden heißen *Tafel*geraden und werden mit den *Tafel*gleichungen (Gl. 2-57 und Gl. 2-58) beschrieben (1) (5) (3).

$$\ln i_{+} = \frac{\alpha * v_e * F}{R * T} + \ln i_0$$
Gl. 2-57

$$\ln|i_{-}| = -\frac{(1-\alpha) * v_{e} * F}{R * T} + lni_{0}$$
Gl. 2-58

Über *Tafel* kann man elektrochemische Größen einer Reaktion, wie den Symmetriefaktor und die Austauschstromdichte bestimmen. Außerdem gewinnt man mit ihr Hinweise und Rückschlüsse auf den Reaktionsmechanismus der Elektrodenreaktion. Die Durchtrittsüberspannung kann man anders als z.B. die Reaktionsüberspannung nicht durch Optimierung oder verändern der Elektrode beeinflussen. Dadurch besitzt sie einen der größten Einflüsse auf die Gesamtüberspannung einer Elektrode (1) (5) (3).

2.4.3.3 Diffusionsüberspannung

Die Diffusionsüberspannung entsteht aufgrund einer allgemeinen Hemmung der Stofftransportgeschwindigkeit vom Elektrolyten an die Elektrodenoberfläche und umgekehrt. Dabei kann eine Schicht entstehen, in der ein Konzentrationsgefälle entsteht. Wegen dieses Konzentrationsgefälles muss eine höhere Spannung zum Ausgleich aufgebracht werden. Im Gleichgewicht, in dem kein Strom fließt, wird effektiv kein Edukt verbraucht und kein Produkt gebildet, weshalb die Konzentration im gesamten Elektrolyten konstant ist (Abbildung 2-21) und somit die gleiche Konzentration in der Mitte der Lösung herrscht wie an der Elektrodenoberfläche (1) (5) (3).

Abbildung 2-21: Konzentrationsprofil um die Elektrode im Gleichgewicht

Kommt es nun zum Stromfluss und zum Entstehen eines Produkts, das von der Elektrodenfläche in die Elektrolytlösung transportiert werden muss, wird Edukt verbraucht. Dieses muss von der Elektrolytlösung zur Elektrodenoberfläche befördert werden. Dabei kann es zu einer Abreicherung der Edukte und einer Anreicherung der Produkte an der Elektrodenoberfläche aufgrund mangelnder Transportgeschwindigkeit kommen. Dieses Problem ergibt sich vor allem in stehenden Lösungen, da die hydrostatischen Verhältnisse um die Elektrode einen großen Einfluss darauf ausüben. Selbst beim ständigen Rühren der Lösung kann es zur Ausbildung einer unbewegten Schicht kommen. Dieses kann besonders bei heterogenen Reaktionen passieren, da nicht alle Reaktionsteilnehmer in Lösung vorliegen. In dieser unbewegten Schicht bildet sich ein Konzentrationsgradient, der sich durch das

Fließen von Strom einstellt. Dadurch kommt es zunächst zu einer Verarmung an der Elektrodenoberfläche vom Edukt und zu einem linearen Abfall vom Beginn der Schicht bis zur Elektrodenoberfläche (Abbildung 2-22) (1) (5) (3).

Im Grenzfall kann es sogar dazu kommen, dass es trotz Erhöhung der Spannung zu keinem weiteren Anstieg der Stromstärke kommen kann, da es nicht gelingt genug Edukt zur Elektrodenoberfläche zu transportieren, wodurch alle Edukte, die durch den Transportvorgang zur Elektrode gelangen sofort reagieren und somit die Konzentration an der Elektrodenoberfläche null annimmt (Abbildung 2-23) (1) (5) (3).

Die sich dabei bildende Schicht mit einer Verarmung an Edukt wird auch *Nernst*sche Diffusionsschicht genannt (1) (5) (3).

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

2.4.3.4 Reaktionsüberspannung

Die Reaktionsüberspannung tritt dann auf, wenn an die Elektrodenreaktion noch eine oder mehrere Reaktionen gekoppelt sind. Ein Beispiel dafür ist die Adsorption oder Desorption von Gasen an der Elektrodenoberfläche. Durch die Hemmung einer oder mehrerer Reaktionen, die mit der Elektrodenreaktion gekoppelt sind, kommt es dazu, dass mehr Spannung aufgebracht werden muss, um diese Hemmung zu überwinden. Bei der Entstehung von Wasserstoff kann es beispielsweise zur Reaktionsüberspannung kommen. Diese kann besonders dann groß werden, wenn man eine schwache Säure elektrolysiert, da vor der eigentlichen Elektrodenreaktion die Dissoziation der Säure (Gl. 2-59) gekoppelt ist (5) (3).

$$HA \rightarrow H^+_{(aq)} + A^-_{(aq)}$$
 Gl. 2-59

Anschließend kommt es nach der Adsorption (Gl. 2-60) zum Ladungsübergang (Gl. 2-61), der eigentlichen Elektrodenreaktion (5).

$$H^+_{(ad)} \rightarrow H^+_{(ad)}$$
 Gl. 2-60

$$H^+_{(ad)} + e^- \rightarrow H_{(ad)}$$
 Gl. 2-61

Dabei entsteht ein einzelnes, nicht gepaartes Wasserstoffatom, das adsorbiert vorliegt (H_{ad}). Anschließend muss dieses Wasserstoffatom rekombiniert werden, (Gl. 2-62) bevor es desorbieren kann und in Lösung geht (Gl. 2-63.) (5).

$$H_{(ad)} + H_{(ad)} \rightarrow H_{2(ad)}$$
 Gl. 2-62

$$H_{2(ad)} \rightarrow H_{2(aq)}$$
 Gl. 2-63

All diese Schritte können gehemmt werden und eine Reaktionsüberspannung hervorrufen. Dieses ist der Grund, warum vor allem bei der Entstehung von Gasen eine große Überspannung auftritt. Die Reaktionsüberspannung kann man durch Optimierung vermindern, so kann man beispielsweise durch die Veränderung der Elektrodenoberfläche den Adsorptions- und Desorptionsvorgang beschleunigen (5) (3).

2.4.4 Passivierung von Elektroden

Während einer Elektrolyse oder beim Ablaufen einer galvanischen Zelle, kann es zur Bildung eines Reaktionsprodukts kommen, das zur Veränderung der Elektrode führt. So kann z.B. die Entstehung von Hydroxidionen dazu führen, dass sich ein Oxid oder Hydroxidsalz auf der Oberfläche der Elektrode festsetzt. Durch die veränderte Elektrodenoberfläche ändern sich auch ihre Eigenschaften. So kann es z.B. passieren, dass aus einer Elektrode erster Art durch Elektrolyse oder durch das Entstehen eines galvanischen Elements eine Elektrode zweiter Art entsteht. Auch kann eine Oberflächenveränderung wie z.B. das Entstehen von Magnesiumhydroxid auf einer Magnesiumelektrode Einflüsse auf die Überspannung haben, da diese wie bereits erwähnt auch von der Oberflächenbeschaffenheit abhängt. Wenn man vom Passivieren von Elektrode abscheidet und eine undurchdringliche Schicht bildet. Dadurch kommt es zu einer Veränderung der Stromdichte. Dieses kann dazu führen, dass nur noch ein Reststrom messbar ist, der trotz weiterer Erhöhung der Spannung nicht ansteigt. Ein Anstieg der Stromstärke ist erst dann wieder zu verzeichnen, wenn der transpassive Bereich erreicht wird (Abbildung 2-24) (5) (9).

Für diesen Anstieg ist nicht die Entstehung weiterer Metallionen verantwortlich, sondern die Bildung von Sauerstoff an der passivierten Oberfläche der Elektrode.

Ob eine Elektrode passiviert wird, hängt neben dem Elektrodenmaterial auch von der Elektrolytkonzentration ab, ebenso wie von dem pH-Wert. Dieses Problem zeigt sich deutlich bei der Verwendung von Aluminium, da es im neutralen Medium eine nichtleitende Oxidschicht bildet. Dieses Problem tritt nicht im stark basischen Milieu auf, da Aluminationen ($[Al(OH)_4]^-$) entstehen, die in Lösung gehen und somit keine Oxidschicht bilden können (5).

2.5 Hypochloritnachweis

Hypochlorit (ClO⁻) wird nachgewiesen über die Entstehung von Iod aus Iodid. Iodid ist ein leicht oxidierbares Ion welches zu Iod reagiert (Gl. 2-64) (10) (11).

$$2I_{(aq)}^- \rightarrow I_2 + 2e^-$$
 Gl. 2-64

Das Entstehen von Iod in saurer, iodidhaltiger Lösung ist ein Zeichen für das Vorhandensein eines Oxidationsmittels. Als Oxidationsmittel können viele verschiedene Substanzen dienen wie z.B. Chlor (Cl_2) oder Hypochlorit (ClO^-)(Gl. 2-65) (10) (11).

$$ClO_{(aq)}^{-} + 2e^{-} + 2H_3O_{(aq)}^{+} \rightarrow Cl_{(aq)}^{-} + 3H_2O$$
 Gl. 2-65

Wenn man mit dieser Reaktion, das Vorhandensein einer Ionenart nachweisen will, muss sichergestellt sein, dass kein weiteres Ion oder Molekül in der Lösung diese Reaktion auslösen kann. Bei der Entstehung von Iod färbt sich die Lösung aufgrund der Eigenfarbe des Iods bräunlich. Um dieses besser sichtbar und den Nachweis empfindlicher zu machen, verwendet man Stärke als Indikator. Stärke liegt dabei als spiralförmige Helix in Lösung vor, in der sich I_3 ⁻ Ionen einlagern können, wodurch eine intensive Blaufärbung zu Stande kommt. I_3 ⁻ Ionen entstehen durch die Reaktion von Iod mit Iodid in wässriger Lösung(Gl. 2-66) und liegen im Gleichgewicht mit ihnen vor (10) (11).

$$I_{(aq)}^- + I_{2(aq)} \rightleftharpoons I_{3(aq)}^-$$
 Gl. 2-66

Um Hypochlorit nachzuweisen, muss also sichergestellt sein, dass keine andere Substanz im sauren Milieu mit Iodid reagiert. Die Nachweisreaktion lautet hierbei wie folgt (Gl. 2-67) (10) (11).

$$ClO_{(aq)}^{-} + 2I_{(aq)}^{-} + 2H_3O_{(aq)}^{+} \rightarrow Cl_{(aq)}^{-} + I_{2(aq)} + 3H_2O$$
 Gl. 2-67

Da sowohl Hypochlorit als auch Chlorid farblose, wässrige Lösungen bildet, kann die Färbung der Lösung durch Iod leicht erkannt werden (10) (11).

2.6 Graphit

Graphit ist eine Form des Kohlenstoffs. Bei Raumtemperatur besitzt er die thermodynamisch stabilste Form. Graphit ist in hexagonalen Schichten aufgebaut, die parallel zueinander angeordnet sind (Abbildung 2-25) (12) (10) (4).

Abbildung 2-25: Darstellung der Struktur der Graphits (http://daten.didaktikchemie.unibayreuth.de/umat/modifikationen-c2/graphitstruktur.jpg)

Der Abstand eines Kohlenstoffatoms (C-Atom) zu seinen benachbarten Atomen ist in einer Schicht konstant, während der Abstand zwischen den Schichten größer ist. Dies liegt daran, dass in einer Schicht ein C-Atom mit drei weiteren C-Atomen über jeweils eine σ -Bindung verknüpft ist. Diese kovalenten Bindungen verursachen den konstanten Bindungsabstand und den Zusammenhalt in einer Schicht. Zwischen den Schichten selber bestehen keine kovalenten Bindungen. Es herrscht lediglich eine schwache Van-der-Waals Kraft, die sie zusammenhalten. Dieser relativ lose Zusammenhalt der Schichten führt dazu, dass die Graphitschichten gegeneinander gut verschoben werden können. Sie eignen sich deshalb gut als Schmiermittel, da man nur schwache Wechselwirkungen überwinden muss. Die elektrische Leitfähigkeit von Graphit rührt vom vierten Außenelektron her, das keine kovalente Bindung eingeht. Dieses sitzt in einem π -Orbital, da der Kohlenstoff im Graphit als sp²-Hybrid vorliegt. Die π -Elektronen sind dabei delokalisiert und können sich weitestgehend frei im Graphit bewegen, wodurch sich die gute Leitfähigkeit des Graphites erklären lässt. Da die Energiedifferenz des besetzten bindenden Molekülorbitals (MOs) und des unbesetzten antibindenden MOs sehr gering ist, können sich die π -Elektronen leicht über eine Schicht bewegen, weshalb die Leitfähigkeit parallel der Schichten besser ist als senkrecht zu ihnen. Aufgrund dessen kann Graphit als elektrischer Leiter und somit als Elektrode verwendet werden.

Für die Herstellung von Bleistiften oder Bleistiftminen wird kein reines Graphit verwendet. Sie bestehen neben Graphit und vielen verschiedenen Zusatzstoffen vor allem aus Ton. Die Härte gibt dabei Auskunft in welchem Verhältnis der Ton zum Graphit steht. Allerdings ist die Härteangabe nicht genormt, weshalb trotz gleichem Härtegrad die Zusammensetzung der Graphitminen von Hersteller zu Hersteller schwankt. Je härter eine Graphitmine ist, desto mehr Ton enthält sie. Sehr weiche Minen enthalten somit wenig Ton und dafür mehr Graphit. Die Härtestufen sind in der folgenden Tabelle dargestellt (Tabelle 2-2) (12) (10) (4).

Härtegrad	Beschreibung	
9B		
bis	sehr weich bis extrem weich, tiefschwarz, viel Graphit	
4B		
3B		
bis	weich	
В		
HB	mittel	
Н		
bis	hart	
3Н		
4H		
bis	sehr hart bis extrem hart, viel Ton	
9H		

Tabelle 2-2: Auflistung der verschiedenen Härtegrade von Graphitminen

2.7 Chloralkalielektrolyse

Die Chloralkalielektrolyse ist ein wichtiges Verfahren zur Herstellung von Chlor und Alkalilaugen. Chlor ist eine wichtige Grundchemikalie, die als Ausgangsstoff vieler chlorhaltiger Verbindungen dient, wie z.B. zur Gewinnung von Chlorkohlenwasserstoffen, die teilweise eine große Rolle bei der Herstellung von Kunstoffen wie Polyvinylchlorid (PVC) spielen. Auch werden sie zur Herstellung von Produkten verwendet, die in der Kältetechnik zum Einsatz kommen. Aufgrund dessen spielt die Herstellung von Chlor als Zwischenprodukt eine große Rolle. Die Herstellung erfolgt heute fast ausschließlich über die Elektrolyse einer Alkalichloridlösung.

Bei der Chloralkalielektrolyse wird in der Regel Natriumchlorid als Alkalichlorid verwendet und als wässrige Lösung elektrolysiert. Die dabei entstehenden Nebenprodukte hängen von der Herstellungsmethode ab. In der Regel entsteht bei der Elektrolyse einer wässrigen Natriumchloridlösung bei geeigneter Elektrodenauswahl Wasserstoff an der Kathode (Gl. 2-68) (9) (12) (5).

$$2H_20 + 2e^- \rightarrow H_{2(g)} + 20H_{(aq)}^-$$

Dabei entstehen Hydroxidionen, dadurch kommt es mit der Elektrolyse zu einer pH-Wert-Änderung um die Kathode. Eine alternative Kathodenreaktion wäre das Abscheiden von Natrium (Gl. 2-69). Dieses geschieht in der Regel nicht, da die nötige Zersetzungsspannung für Natrium wesentlich höher liegt als die des Wasserstoffs, da es eine geringere Elektronenaffinität besitzt (12) (5).

$$Na^+_{(aq)} + e^- \rightarrow Na_{(s)}$$
 Gl. 2-69

An der Anode entsteht bei geeigneter Elektrodenwahl Chlor statt Sauerstoff, obwohl das Standardpotential von Sauerstoff aus neutraler Lösung mit 0,82V (Gl. 2-70) deutlich geringer ist als das des Chlors, das bei 1,37 V liegt (Gl. 2-71).

Gl. 2-68

 $2H_2O \rightarrow O_{2(g)} + 4e^- + 4H^+_{(aq)}$ Gl. 2-70 $2Cl^-_{(aq)} \rightarrow Cl_{2(q)} + 2e^-$ Gl. 2-71

Somit sind die Hauptprodukte der Elektrolyse Wasserstoff und Chlor (Gl. 2-72).

$$2H_2O + 2Cl_{(aq)}^- \rightarrow H_{2(g)} + Cl_{2(g)} + 2OH_{(aq)}^-$$
 Gl. 2-72

Wenn es zu keiner Trennung des Anoden- und Kathodenraumes kommt und Hydroxidionen in den Anodenraum gelangen, kann es dort zu einer Folgereaktion kommen, da das entstehende Chlor mit den anwesenden Hydroxidionen zu Chlorid und Hypochlorit disproportioniert (Gl. 2-73) (13) (12) (5).

$$Cl_{2(g)} + 20H_{(aq)}^{-} \rightarrow Cl_{(aq)}^{-} + ClO_{(aq)}^{-} + H_2O$$
 Gl. 2-73

Wenn das gewünschte Reaktionsprodukt Chlorgas ist und die Elektrodenräume nicht getrennt sind, führt dies zu einer verringerten Stromausbeute durch die Nebenreaktion. Zudem kann es auch noch zu einer Verunreinigung des Chlorgases kommen. Dieses ist der Fall, wenn verstärkt Sauerstoff entsteht, da das entstandene Hypochlorit ebenfalls eine Elektrodenreaktion eingehen kann, in der sich Sauerstoff bildet(Gl. 2-74) (13) (12) (5).

$$6ClO_{(aq)}^{-} + 3H_2O \rightarrow 2ClO_{3(aq)}^{-} + 4Cl_{(aq)}^{-} + 6H_{(aq)}^{+} + 1,5O_{2(g)} + 6e^{-}$$
Gl. 2-74

Dieses Kapitel beschäftigt sich zuerst mit der Verwendung der Chloralkalielektrolyse zur Herstellung von Chlorgas, bevor die heutigen Anwendungen näher beleuchtet werden. Zum Schluss kommt es zu einem kleinen Ausblick, in welchen Bereichen die Verwendung der Chloralkalielektrolyse in Zukunft möglicherweise auch eine Rolle spielen könnte.

2.7.1 Chloralkalielektrolyse gestern

Die Herstellung von Chlor durch Elektrolyse ist schon eine lange bekannte Möglichkeit zur Herstellung dieses wichtigen chemischen Grundstoffs. In diesem Kapitel sollen die drei im Laufe der Zeit entwickelten Elektrolyseverfahren beschrieben werden und anschließend miteinander verglichen werden. Die erste technische Herstellung von Chlor erfolgte durch das Diaphragmaverfahren im Jahre 1890. Nur zwei Jahre später wurde ein weiteres Verfahren, das Amalgamverfahren entwickelt. Das neuste Verfahren ist das Membranverfahren, das seit 1975 angewendet wird. Alle diese Verfahren wurden im Laufe der Zeit weiterentwickelt und perfektioniert. Hier werden allerdings nur die allgemeinen Funktionsweisen der einzelnen Verfahren beschrieben (10) (12) (11) (5) (13)

2.7.1.1 Diaphragmaverfahren

Beim Diaphragmaverfahren wird eine gesättigte Natriumchloridlösung bei einer Temperatur von 80 bis 95 °C elektrolysiert. An der Anode entsteht hierbei wie bereits erwähnt Chlorgas (Gl. 2-71) und an der Kathode Wasserstoff(Gl. 2-68). Das Diaphragma, das den Anodenraum von Kathodenraum trennt, sorgt dafür, dass die Hydroxidionen nicht mit dem Chlor reagieren können (Gl. 2-73). Es besteht meistens aus Asbest- oder Kunststofffasern. Der Elektrolyt fließt aufgrund des hydrostatischen Drucks auf der Seite der Anode, vom Anodenraum, in dem Chlor entsteht, in den Kathodenraum, wo die Hydroxidionen entstehen. Um das Vermischen der beiden Gase zu vermeiden, werden sie separat voneinander abgeführt. Der allgemeine Aufbau des Diaphragmaverfahrens ist in Abbildung 2-27 dargestellt (5) (13).

Abbildung 2-27: Schematische Darstellung des Diaphragmaverfahren

Die Anode ist hierbei in der Regel ein Hohlkörper aus Rutheniumoxid, der mit Titan beschichtet ist oder eine Graphitelektrode. Die Kathode besteht aus Eisen, dass als Stahlnetz vorhanden ist. Aufgrund der basischen Umgebung der Kathode ist diese stabil und besitzt eine geringe Überspannung für Wasserstoff (5) (13).

2.7.1.2 Amalgamverfahren

Beim Amalgamverfahren kann man im Gegensatz zu den beiden anderen Verfahren statt Natriumchlorid auch Kaliumchlorid in wässriger Lösung zur Elektrolyse benutzten. Es entsteht dann Kalilauge anstelle von Natronlauge. Durch eine weitere Variante kann man statt Laugen auch Alkalialkoholate herstellen. Der Aufbau des Amalgamverfahrens (Abbildung 2-28) besteht neben der Elektrolysezelle noch aus einem Amalgamzersetzter (5) (13) (9).

Abbildung 2-28: Schematische Darstellung des Amalgamverfahren

Die Elektrolysezelle besitzt hierbei einen Boden mit Neigung, da die Kathode aus Quecksilber besteht, das kontinuierlich mit einer Dicke von ca. 5mm über einen elektrisch leitenden Zellenboden, der an die Stromquelle angeschlossen und negativ gepolt ist, fließt. Dabei wird am oberen Ende kontinuierlich Quecksilber hinzugegeben (5) (13).

In die Elektrolysezelle wird ständig frische Sole zugeführt und verarmte Sole abgeleitet. Anschließend wird die Sole wieder mit Natriumchlorid angereichert. Das erfolgt durch das Lösen von festem Salz. Die neue Sole wird dem Prozess wieder zugeführt. Die Anoden bestehen aus Graphit, die kontinuierlich aufgrund kleiner Mengen an entstehendem Sauerstoff, verbraucht werden (Gl. 2-75) (5) (13).

$$C_{(s)} + O_{2(g)} \to CO_{2(g)}$$
 Gl. 2-75

Dabei entsteht entweder CO oder CO₂. Aufgrund dessen werden sie immer wieder nachgeschoben. Den Abstand der Anoden und der Kathode versucht man möglichst gering zu halten, um einen unnötigen Stromverlust zu vermeiden. An der Anode findet die bereits erwähnte Elektrodenreaktion zu Chlor statt (Gl. 2-71). Allerdings entwickelt sich an der Kathode kein Wasserstoff (Gl. 2-68). Dieses liegt einerseits an der großen Überspannung von Wasserstoff an Quecksilber. Andererseits kommt es zu einer exothermen Folgereaktion bei der Entstehung von Natrium (Gl. 2-76), das in einer sich anschließenden Reaktion mit dem Quecksilber Natriumamalgam (Gl. 2-77) bildet. Dadurch wird soviel Energie frei, dass die Entstehung von Natriumamalgam gegenüber der Wasserstoffentwicklung begünstigt ist (5) (13) (9).

$$Na^+_{(aq)} + e^- \rightarrow Na_{(s)}$$
 Gl. 2-76

$$Na_{(s)} + x Hg \rightarrow NaHg_x$$
 Gl. 2-77

Das am Ende des Zellbodens abgeführte Quecksilber enthält somit auch Natriumamalgam, welches nun in den Amalgamzersetzer transportiert wird. Dort wird durch das Hinzugeben von Wasser das Amalgam zersetzt und es entsteht neben Wasserstoff und Natronlauge auch gereinigtes Quecksilber (Gl. 2-78) (5) (13).

$$NaHg_x + H_2O \rightarrow NaOH + x Hg + \frac{1}{2}H_2$$
 Gl. 2-78

Das Quecksilber wird zurück in die Elektrolysezelle geführt. Setzt man statt Wasser einen Alkohol im Amalgamzersetzer ein, bekommt man als Produkt keine Lauge, sondern ein Alkoholat (Gl. 2-79) (13) (5).

$$NaHg_x + ROH \rightarrow NaOR + x Hg + \frac{1}{2}H_2$$
 Gl. 2-79

2.7.1.3 Membranverfahren

Beim Membranverfahren wird durch eine Membran verhindert, dass Hydroxidionen in den Anodenraum gelangen. Der grundlegende Aufbau wird in Abbildung 2-29 dargestellt.

Abbildung 2-29:

Schematische Darstellung des Aufbaus des Membranverfahren

Diese Membran ist lediglich für Kationen und Wasser durchlässig, nicht aber für Anionen, wodurch sie weder für Chlorid- noch Hydroxidionen passierbar ist. Bei der Membran handelt es sich um ein spezielles Polymer, wie z.B. ein perfluoriertes Polymer mit endständiger Carboxyl- oder Sulfonsäuregruppe.

Bei diesem Verfahren wird eine Natriumchloridlösung elektrolysiert, die einen sehr hohen Reinheitsgrad aufweisen muss, da es ansonsten schneller zu einer Verschmutzung der Membran bis hin zur fast vollständigen Undurchlässigkeit kommt (5) (13).

Dabei wird im Anodenraum die Natriumchloridsole hinzugegeben und die abgereicherte Sole abgeführt. Anschließend wird sie erneut mit Natriumchlorid angereichert und als Sole zurück in die Zelle geleitet. Im Kathodenraum wird hingegen Wasser in die Zelle eingespeist und die Natronlauge abgeführt. In der Regel werden mehrere Zellen hintereinander geschaltet, weshalb in die hinteren Zellen statt Wasser, eine weniger konzentrierte Natronlauge eingeleitet wird, deren Konzentration über die Zelle zunimmt. Die Anodenreaktion ist hier ebenfalls die Entstehung von Chlor (Gl. 2-71), wobei die Anode aus Titan besteht und die Kathode, an der die Wasserstoffentwicklung stattfindet (Gl. 2-68), aus Stahl ist, da dieser eine geringe Wasserstoffüberspannung aufweist. (5) (13)

2.7.1.4 Vergleich der verschiedenen Chloralkalielektrolyseverfahren zur Herstellung von Chlor

Die drei Verfahren erzielen eine unterschiedliche Produktqualität. Außerdem benötigen sie eine unterschiedliche Zellspannung, weshalb ihr Energieverbrauch nicht identisch ist, ebenso wie die Höhe der Investitionskosten. Diese Unterschiede sind in der folgenden Tabelle dargestellt (Tabelle 2-3) (13).

	Diaphragmaverfahren	Amalgamverfahren	Membranverfahren	
Zellspannung (V)	3,2-3,5	4,0-4,25	3,1-3,5	
Stromdichte (kA/m ²)	2,2-2,7	8-12	3-4	
Natronlauge:				
- % NaOH aus Elektrolyse	12 (+ 15% NaCl)	50	30-35	
-% NaCl in 50%iger Lauge	1	0,005	0,005	
	(nach Reinigung)			
Energieverbrauch (kWh/t Cl ₂)				
Elektrolyse	2800-3000	3300-3600	2500-2700	
Natronlauge-Eindampfung auf 50%	800	-	150	
Insgesamt	3600-3800	3400-3700	2700-2900	
Investitionskosten (% bezogen auf Diaphragmaverfahren)	100	90-95	80	

Tabelle 2-3:Vergleich der verschiedenen Chloralkalielektrolysen zur Herstellung von Chlor ((13)S 496 Tab. 10.4)

Hierbei fällt auf, dass das Amalgamverfahren die mit Abstand höchste Zellspannung besitzt, was an der Bildung des Natriumamalgams liegt. Dafür entsteht dort die konzentrierteste Lauge, die eine ebenso geringe Verunreinigung an Natriumchlorid aufweist, wie die aus dem Membranverfahren. Die

Lauge mit der stärksten Verunreinigung entsteht beim Diaphragmaverfahren, weshalb hier eine Reinigung der Lauge nötig ist. Trotzdem ist selbst nach dem Reinigen die Reinheit der Laugen aus den beiden anderen Verfahren wesentlich höher. Auffällig ist auch, dass die Investitionskosten des Diaphragmaverfahrens verhältnismäßig hoch sind, ebenso wie der Energieverbrauch. Das energetisch günstigste Verfahren ist das Membranverfahren, welches gleichzeitig die geringsten Investitionskosten aufweist und eine ebenso reine Natronlauge erzielt wie das Amalgamverfahren. Zudem ist es das einzige der drei Verfahren, in dem keine umweltgefährdenden Stoffe eingesetzt werden, da im Diaphragmaverfahren Asbest und im Amalgamverfahren Quecksilber verwendet wird. Aufgrund dessen erweist sich das Membranverfahren als das ökologischste Verfahren (13).

2.7.2 Chloralkalielektrolyse heute

Auch heute werden noch alle drei großtechnischen Verfahren zur Herstellung von Chlor verwendet, wobei in den letzten Jahren eine neue Anwendung der Chloralkalielektrolyse eine immer größere Bedeutung erlangte. Mit der Chloralkalielektrolyse ist es möglich Wasser zu desinfizieren, indem man die Elektrodenräume nicht voneinander trennt und das somit entstehende Hypochlorit zur Desinfektion nutzt. Hypochlorit ist hierbei ein wirksameres Desinfektionsmittel als Chlorgas und hat zudem noch weitere Vorteile, die im Kapitel 2.7.2.2 näher erläutert werden (13).

2.7.2.1 Chlorherstellung

In Laufe der Zeit wurden zur Herstellung von Chlor in den verschiedenen Ländern jeweils unterschiedliche Verfahren favorisiert. So wird in den USA am häufigsten das Diaphragmaverfahren verwendet, während in Japan fast ausschließlich mit den Membranverfahren gearbeitet wird. Westeuropa und auch Deutschland bevorzugen momentan das Amalgamverfahren mit dem fast die Hälfte des in Westeuropa hergestellten Chlorgases produziert wird. Allerdings soll bis 2020 der Großteil des Chlors mit Hilfe des Membranverfahren erzeugt werden, da es keine umweltschädlichen Stoffe wie Quecksilber verwendet. Auch ist der Anteil des durch Elektrolyse hergestellten Chlors seit der Entwicklung der Elektrolyse immer weiter gestiegen. So lag die durch Elektrolyse hergestellte Chlormenge 2000 bei ca. 45Mt, was 95% (12) der weltweiten Gesamtproduktion ausmachte (13) (12).

2.7.2.2 Wasserdesinfektion mittels Chloralkalielektrolyse

Das Desinfizieren größerer Wassermengen mittels Chloralkalielektrolyse hat sich in den letzten Jahren immer stärker als Alternative gegenüber den herkömmlichen Verfahren z.B. mit Chlorgas, entwickelt. Wobei die Desinfektion mit Chlorgas noch immer weltweit am meisten vertreten ist. Dabei bietet die Chloralkalielektrolyse eine gezielte Abtötung unerwünschter Bakterien und Algen, wodurch das Wasser desinfiziert wird. Hierbei gibt es zwei grundlegende Verfahren. Das eine Verfahren ist die Membranelektrolyse, bei der die Elektrodenräume getrennt werden, um eine möglichst geringe Natriumchloridlösung im desinfizierten Wasser zu realisieren. Dabei kann das entstandene Chlorgas entweder in das zu desinfizierende Wasser direkt eingeleitet werden oder es wird als Natriumhypochloritlösung zwischengelagert. Das andere Verfahren ist die Rohrzellenelektrolyse bei der das zu desinfizierende Wasser mit Natriumchlorid versetzt und in einer Rohrzelle elektrolysiert wird. Dabei entsteht Natriumhypochlorit, (Gl. 2-73) da sich die entstehende Natronlauge (Gl. 2-68)

mit dem entstehenden Chlor (Gl. 2-71) vermischt und reagiert (14) (15) (16) (17) (18). Diese Art der Wasserdesinfektion wird heutzutage vor allem in Schwimmbädern angewendet, aber auch zur Trinkwasserdesinfektion. Der Salzgehalt des Wassers muss beim zweiten Verfahren lediglich 0,2% betragen, um eine sichere (18) Desinfektion zu gewährleisten. In Schwimmbädern besitzt das Verfahren zur Wasserdesinfektion mittels Elektrolyse viele Vorteile gegenüber der Reinigung mit Hypochlorit-Tabletten oder mit Chlorgas. Ein großer Vorteil ist das Fehlen des typischen Chlorgeruchs. Zudem entfallen die sicherheitstechnischen Aspekte zum Lagern der Chemikalien, da Natriumchlorid ungefährlich ist und die desinfizierenden Chemikalien je nach Bedarf direkt vor Ort im Wasser produziert werden. Ein weiterer positiver Aspekt dieser Desinfektionsmethode ist, dass die Anlagen über Regelungstechnik die Dosierung regeln können und sie nicht sehr wartungsintensiv sind. Zudem hat das leicht salzige Wasser im Schwimmbad noch positive Nebeneffekte auf die Besucher, da durch den leichten Natriumchloridgehalt die Haut nicht so stark ausgelaugt wird und er so gering ist, das man ihn nicht bemerkt. Ein Nachteil dieses Verfahren in Schwimmbädern ist, dass durch das Natriumchlorid die Korrosiveigenschaften des Wassers gegenüber unedlen Metalle erhöht wird und somit darauf geachtet werden muss, dass sie beim Schwimmbadbau nicht verwendet werden. Allerdings stellt das aufgrund der zahlreichen Baustoffe kein Problem dar. Dieses Verfahren zur Wasserdesinfektion wird in Deutschland bisher kaum verwendet. Sehr häufig kommt die Chloralkalielektrolyse zur Wasserdesinfektion aber schon in Australien und Südafrika zum Einsatz, wo bereits in 70 bis 80% der Schwimmbäder (17) das Wasser mittels Elektrolyse einer Natriumchloridlösung gereinigt wird (18) (16) (17) (14).

2.7.3 Chloralkalielektrolyse morgen

Die Chloralkalielektrolyse wird wahrscheinlich auch in Zukunft weiterhin das Verfahren zur Herstellung von Chlor sein. Allerdings wird der Anteil des mit Hilfe des Membranverfahrens hergestellten Chlors immer weiter wachsen, da es das ökologischste Verfahren ist und keine umweltbelastenden Stoffe benötigt. Auch wird wahrscheinlich ihre Bedeutung in der Wasserdesinfektion immer weiter wachsen, da es deutliche Vorteile gegenüber vielen herkömmlichen Verfahren besitzt und keine gefährlichen Stoffe gelagert werden müssen.

3 Praktische Durchführung

Dieses Kapitel beschäftigt sich mit der praktischen Durchführung der Versuche, weshalb zuerst die für die Versuche benötigten Chemikalien und Geräte aufgelistet werden, bevor die Durchführung beschrieben wird.

3.1 Verwendete Chemikalien

Im Folgenden werden die für die Versuche benötigten Chemikalien tabellarisch aufgelistet (Tabelle 3-1).

Chemikalie	Beschreibung	Menge
Natriumchlorid	z.A.; >99,5%; Merck 106404	~150 g
Kaliumiodid	z.A.; 99,5%; Merck 105043	~ 50 g
Lösliche Stärke	löslich; reinst; Merck 101253	~ 10 g
Vollentsalztes Wasser	FH-Aachen Campus Jülich	
Schwefelsäure	c=1 mol/L	~100 mL
Natriumthiosulfat	wasserfrei; reinst; >98%; AppliChem Panreac; ITW Companies A2833	~ 8 g

 Tabelle 3-1:
 Auflistung der verwendeten Chemikalien

3 Praktische Durchführung

3.2 Verwendete Geräte

Im Folgenden werden die verwendeten Geräte in einer Tabelle (Tabelle 3-2) aufgezählt.

Tabelle 3-2:	Auflistung	der	benötigten	Geräte
--------------	------------	-----	------------	--------

Gerät	Beschreibung	Anzahl
Magnetrührer	mit Heizfunktion	1
Rührfisch		1
Bechergläser	Verschiedene Größen (Tabelle 3-5	ins. 4
	Tabelle 3-5)	
Gummibänder		2
Reagenzgläser		2
Reagenzglasständer		1
Vollpipette	10 mL, 25 ml und 50 mL	je 1
Messkolben	verschiedene Größen (Tabelle 3-4)	ins. 11
Messzylinder	250 mL	1
Pasteurpipette		10
Peleusball		1
Glastrichter	Durchmesser 10 cm	1
Faltenfilter	Durchmesser 10 cm	5
Glasstab		1
Stoppuhr		1
Reck		1
Muffen		2
Klemmen		2
Multimeter	Keithley 179 TRMS Digital Multimeter	1
Stromquelle mit Amperemeter	LEYBOLD didactic GmbH; 664407; WA00019624	1
Belastungselemente	50 Ω und 5 Ω von LEYBOLD didactic GmbH; 666483; WR00001425	1
Elektroden	verschiedene Arten (Tabelle 3-3)	ins.9

Die verwendeten Elektroden sind in der folgenden Tabelle dargestellt (Tabelle 3-3). Die Graphitelektroden wurden teilweise in den Versuchen verbraucht, weshalb mehrere von der gleichen Art benötigt wurden.

3 Praktische Durchführung

Kathoden	Maße (Breite; Dicke)	Graphitanoden Stärke	Durchmesser
Zinkblech	4 cm; 0,7 mm	2B (Faber-Castell)	2 mm
Aluminiumblech	4,2 cm; 1,1 mm	B (Faber-Castell)	2 mm
Magnesiumblech	5,0 cm; 0,3 mm	HB (Faber-Castell alt)	2 mm
		HB (Faber-Castell neu)	2 mm
		H (Faber-Castell)	2 mm
		2H (Faber-Castell)	2 mm

Tabelle 3-3:	Auflistung der benötigten Elektroden
--------------	--------------------------------------

Es werden für die Versuche mehrere Arten von Messkolben (Tabelle 3-4) und Bechergläsern (

Tabelle 3-5) benötigt, weshalb diese in den folgenden Tabellen aufgelistet sind.

Tabelle 3-4: Auflistung der benötigten Messkolben

Größe	100 mL	250 mL	500 mL
Anzahl	8	2	1

Tabelle 3-5:Auflistung der benötigten Bechergläser

Größe	50 mL	100 mL	250 mL
Anzahl	1	2	1

3.3 Versuchsdurchführung

Im folgenden Text wird die Durchführung der praktischen Versuchsreihen geschildert. Nacheinander werden die Herstellung der benötigten Lösungen und die Versuchsdurchführungen der einzelnen Versuchsreihen beschrieben.

3.3.1 Herstellung der verwendeten Lösungen

In diesem Unterkapitel wird die Herstellung der benötigten Lösungen aus den im Kapitel 3.1 angegebenen Chemikalien beschrieben.

3.3.1.1 Natriumchloridlösungen

Es wurden verschiedene Konzentrationen an NaCl in Lösung benötigt. Die verwendeten Konzentrationen sind in der Tabelle 3-6 aufgeführt.

Tabelle 3-6: Auflistung der verwendeten Konzentrationen der Natriumchloridlösungen

0,1 mol/L	0,075 mol/L	0,05 mol/L	0,025 mol/L	
0,01 mol/L	0,0075 mol/L	0,005 mol/L	0,0025 mol/L	0,001 mol/L

Die Stammlösung aus der alle anderen Lösungen durch Verdünnung angesetzt werden, ist die 0,1 mol/L Lösung. Hierzu wurden 2,922 g NaCl in einem 100 mL Becherglas eingewogen und in deionisiertem Wasser durch Erwärmen unter Rühren gelöst. Anschließend wurde die Lösung über einen Glastrichter in einen 500 mL Messkolben überführt. Daraufhin wurde er mit deionisiertem Wasser aufgefüllt.

Für die Verdünnungen wurden die in Tabelle 3-7 folgende Volumina der Lösungen mittels Vollpipette abpipettiert und auf das angegebene Volumen in einem Messkolben mit deionisiertem Wasser aufgefüllt.

Tabelle 3-7:	Herstellungsangaben für die Verdünnung der Natriumchloridlösung zu den
	benötigten Konzentrationen

Konzentration	Herstellung
0,075 mol/L	50 mL der 0,1 mol/L Lösung und 25 mL der 0,1 mol/L Lösung auf 100 mL aufgefüllt
0,05 mol/L	50 mL der 0,1 mol/L Lösung auf 100 mL aufgefüllt
0,025 mol/L	25 mL der 0,1 mol/L Lösung auf 100 mL aufgefüllt
0,01 mol/L	25 mL der 0,1 mol/L Lösung auf 250 mL aufgefüllt
0,0075 mol/L	50 mL der 0,01 mol/L Lösung und 25 mL der 0,01 mol/L Lösung auf 100 mL aufgefüllt
0,005 mol/L	50 mL der 0,01 mol/L Lösung auf 100 mL aufgefüllt
0,0025 mol/L	25 mL der 0,01 mol/L Lösung auf 100 mL aufgefüllt
0,001 mol/L	10 mL der 0,01 mol/L Lösung auf 100 mL aufgefüllt

3.3.1.2 Stärkelösung

Für die Herstellung der Stärkelösung werden 0,5 g lösliche Stärke in einem 50 mL Becherglas eingewogen und unter ständigem Rühren und Erwärmen in deionisiertem Wasser gelöst. Anschließend wird die heiße Lösung über einen Faltenfilter in einem Glastrichter in einen 100 mL Messkolben abfiltriert. Nach dem Abkühlen der Lösung füllt man den Messkolben mit deionisiertem Wasser auf. Wenn die Stärkelösung nach einiger Zeit beginnt trüb zu werden, muss sie verworfen und eine neue angesetzt werden.

3.3.1.3 Natriumthiosulfatlösung

Als erstes werden 300 mL deionisiertes Wasser 10 min ausgekocht. Anschließend werden 3,9528g wasserfreies Natriumthiosulfat in einem 100 mL Becherglas eingewogen und in einem Teil des ausgekochten Wasser gelöst und anschließend in einen 250 mL Messkolben überführt und mit dem ausgekochten Wasser auf 250 mL aufgefüllt. Die erhaltene Lösung hat eine Konzentration von 0,1 mol/L.

3.3.2 Versuchsdurchführung der Stromstärke in Abhängigkeit der Spannung

Es wird eine 0,1 mol/L NaCl-Lösung elektrolysiert. Die dazu nötigen Geräte wurden bereits zuvor aufgeführt. 100 mL der Lösung werden mit einem Messzylinder in ein 250 mL Becherglas überführt. Dieses versieht man mit einem Rührfisch und stellt das Becherglas auf den Magnetrührer. Anschließend werden die beiden Elektroden so befestigt, dass sie mit der angegebenen Eintauchtiefe in die gerührte Lösung eintauchen. Das Befestigen der Elektroden erfolgt über ein Stativ mit Muffen, Klemmen und Gummibändern (Abbildung 3-1).

Abbildung 3-1: Darstellung der Befestigung der Elektroden am Stativ

Die Elektroden werden nun wie in Abbildung 3-2 dargestellt miteinander verbunden, wobei die Graphitelektrode die Anode und die Metallplatte die Kathode darstellt.

Abbildung 3-2 Schematische Darstellung der Verknüpfung der Messgeräte mit den Elektroden bei den Versuchen zur Abhängigkeit der Stromstärke zur Spannung

Dabei werden auch die Messgeräte, von denen man die Stromstärke und die Spannung abliest, miteingebaut (Abbildung 3-3).Dabei sind die Einstellungen der Geräte zu sehen, welche auch in Tabelle 3-8 dargestellt sind.

Tabelle 3-8:	Auflistung der E	instellungen der	Geräte während des	Versuches
--------------	------------------	------------------	--------------------	-----------

Gerät	Einstellung
Stromquelle	Gleichspannung; wird erhöht während der Messungen
Ohmsche Widerstände	Werden während der jeweiligen Messung stufenweise runtergefahren; Maximal Ω und Ω
Amperemeter	Gleichstrom; im Bereich 2000 mA
Voltmeter	Gleichstrom; im Bereich 20 mV

Abbildung 3-3: Bild der verwendeten Geräte während eines Versuchs

Die Stoppuhr wird gestartet, sobald der Strom für die Elektrolyse angeschaltet wird. Während des Versuchs werden die Spannung und die Stromstärke gemessen. Die Spannung wird dabei durch das Verändern des *Ohm*schen Widerstands und der Spannung der Stromquelle geändert und die Stromstärke mit ihr. Dieses Verhalten wird schrittweise zusammen mit der Zeit notiert und in Tabellenform dargestellt. Eine solche Tabelle sieht wie in Tabelle 3-9 dargestellt aus.

Tabelle 3-9: Schematischer Aufbau einer Tabelle zur Notierung der gemessenen Werte

Spannung (U) in V	Stromstärke (I) in mA	Zeit (t) in min:s

Nachdem die angelegte Spannung vom Minimum zum Maximum verändert wurde, wird die Elektrolyse beendet und die Zeit notiert. In manchen Fällen wird eine zweite Messreihe ohne das Ausschalten der Geräte gefahren, wobei die Zeit weiterläuft, während die Spannung wieder vom Minimum zum Maximum verändert wird. Die Messwerte werden im 15-Sekundentakt innerhalb einer Reihe aufgenommen. Zwischen zwei direkt aufeinanderfolgenden Messungen oder vor Beginn der Messung und nach Start der Elektrolyse, wird die Spannung auf das Minimum reduziert. Nach Beendigung der Messung wird der pH-Wert grob mit einen pH-Papier gemessen und der Nachweis für das Entstehen von Hypochlorit (CIO⁻) durchgeführt.

Dazu wird in ein Reagenzglas eine Spatelspitze Kaliumiodid gegeben und mit ein paar Tropfen der 1 mol/L Schwefelsäure angesäuert. Als nächstes kommen ein paar Tropfen der Stärkelösung hinzu bevor ca. 1 mL der elektrolysierten Natriumchloridlösung hinzugegeben wird. Wenn sich die Lösung daraufhin blau verfärbt, ist der Nachweis für die erwünschte Anodenreaktion positiv.

Anschließend wird nach der Beendigung des Versuches die Elektrolytlösung mit einigen Tropfen der Natriumthiosulfat-Lösung versetzt, so dass der Hypochlorit-Nachweis negativ ausfällt. Anschließend kann die Lösung entsorgt werden.

3.3.2.1 Abhängigkeit von der Eintauchtiefe

Der Einfluss der Eintauchtiefe auf das Stromstärke-Spannungs-Verhältnis wird in dieser Versuchsreihe untersucht. Hierbei werden die Messreihen wie in Kapitel 3.3.2 beschrieben durchgeführt. Die Elektrolytkonzentration beträgt 0,1 mol/L und wird konstant gehalten. Auch die Rührfischgeschwindigkeit und der Abstand der Elektroden bleiben während der Versuchsreihe gleich. Es wird hierbei sowohl die Eintauchtiefe der Anode als auch die der Kathode geändert. Beim Anodenmaterial handelt es sich um eine Graphitelektrode mit der Stärke HB von Faber-Castell. Die Kathode wird bei diesem Versuch geändert, was bedeutet, dass die Abhängigkeit von der Eintauchtiefe von allen verwendeten Kathodenmaterialien erfasst wird. Die Eintauchtiefen der Kathode und der Anode variieren im Bereich von 1 cm bis 3 cm. Während die Eintauchtiefe einer Elektrode geändert wird, bleibt die andere konstant.

3.3.2.2 Abhängigkeit von der Elektrodenart

Bei dieser Versuchsreihe werden die verschiedenen Elektrodenmaterialien miteinander verglichen. Es wird sowohl das Anoden- als auch das Kathodenmaterial verändert. Während das Anodenmaterial variiert, bleibt das Kathodenmaterial konstant und umgekehrt. Auch hier werden die Rührfischgeschwindigkeit, die Eintauchtiefe, der Abstand und die Konzentration der Elektrolytlösung konstant gehalten, um eine Vergleichbarkeit zu erreichen. Die Konzentration beträgt dabei 0,1 mol/L.

3.3.2.2.1 Abhängigkeit vom Kathodenmaterial

In dieser Versuchsreihe wird das Kathodenmaterial verändert. Es werden die in Tabelle 3-3 aufgezählten Kathodenmaterialien verwendet. Hierbei werden die Eintauchtiefen von 2 cm der Kathode und 1,5 cm der Anode angewendet. Die Anode ist auch hier eine Graphitelektrode mit einer Stärke HB von Faber-Castell. Es wird hierbei jeweils eine Messreihe für jedes Kathodenmaterial wie in Kapitel 3.3.2 beschrieben durchgeführt.

3.3.2.2.2 Abhängigkeit von der Anode

In dieser Versuchsreihe wird das Anodenmaterial verändert. Es finden die in Tabelle 3-3 aufgezählten Anodenmaterialien Verwendung. Hierbei werden die Eintauchtiefen von 2 cm der Kathode und 2 cm der Anode verwendet. Die Kathode ist eine Magnesiumelektrode. Es wird dabei jeweils eine Messreihe für jedes Anodenmaterial wie in Kapitel 3.3.2 beschrieben durchgeführt.

3.3.2.3 Abhängigkeit von der Konzentration

Um die Konzentrationsabhängigkeit des Verhaltens der Stromstärke zu der Spannung zu untersuchen werden verschiedene Konzentrationen der Natriumchloridlösung benötigt. Diese werden wie im Kapitel 3.3.1.1 beschrieben hergestellt. Anschließend werden jeweils zwei direkt aufeinanderfolgende Messreihen für jede Konzentration wie in Kapitel 3.3.2 erläutert aufgenommen. Dabei wird die Rührgeschwindigkeit konstant gehalten, ebenso wie der Abstand der Elektroden. Die Eintauchtiefe der Elektroden beträgt 1,5 cm für die Graphitanode und 2 cm für die Magnesiumkathode. Die verwendete Graphitelektrode hat die Stärke HB und stammt von Faber-Castell.

3.3.2.4 Abhängigkeit von der Rührfischgeschwindigkeit

Hierbei wird der Einfluss der Rührfischgeschwindigkeit auf das Verhalten der Stromstärke zur Spannung untersucht. Man nimmt je zwei direkt aufeinanderfolgende Messreihen pro Rührfischgeschwindigkeit wie in Kapitel 3.3.2 beschrieben auf. Die Konzentration der Elektrolytlösung ist auch hier konstant bei 0,1 mol/L. Der Versuch wird mit einer Anode aus Graphit mit der Stärke HB von Faber-Castell und einer Magnesiumkathode durchgeführt. Der Elektrodenabstand und die Eintauchtiefe, die für die Kathode 2 cm und für die Anode 1,5 cm beträgt, bleiben während der Messreihe konstant.

3.3.3 Versuchsdurchführung zur Haltbarkeit der Graphitelektroden

Diese Versuchsreihe beschäftigt sich mit der Haltbarkeit der Graphitelektroden und der Reproduzierbarkeit von Messwerten. Hierzu wird ein ähnlicher Versuchsaufbau wie in den vorigen Versuchsreihen verwendet (Abbildung 3-4).

Abbildung 3-4: Schematische Darstellung der Verknüpfung der Messgeräte mit den Elektroden bei den Versuchen zur Haltbarkeit der Graphitelektroden

Die eingestellte Spannung liegt bei ihrem Maximum, weshalb keine *Ohm*schen Widerstände eingebaut werden und die Klemmspannung auf das Maximum der Stromquelle geschaltet wird. Die verwendete Konzentration beträgt 0,1 mol/L. Die Eintauchtiefe der Elektroden beträgt für die Graphitelektrode 2 cm und für die Magnesiumkathode 2 cm. Der Abstand der Elektroden und die Rührfischgeschwindigkeit bleiben konstant. Die Härte der Graphitelektrode variiert dabei, um die unterschiedlichen Härten miteinander zu vergleichen.

Die Messung beginnt, sobald der Strom eingeschaltet wird. Nun werden die Spannung und die Stromstärke in Abhängigkeit von der Zeit notiert. Dieses geschieht zuerst in zwei- bis fünfminütigem Takt, solange beide Werte sich kaum ändern. Später werden die Werte in einminütigen Abständen erfasst. Diese werden solange notiert, bis die Stromstärke und die Spannung den Wert Null erreichen. Dann wird die Messreihe beendet und die Zeit notiert. Anschließend wird auch hier der pH-Wert gemessen und der Hypochloritnachweis durchgeführt.

4 Diskussion der Ergebnisse

Dieses Kapitel beschäftigt sich mit den Ergebnissen, der im vorigen Abschnitt beschriebenen Versuchsreihen.

4.1 Elektrodenreaktionen

Alle im nachfolgenden Kapitel ausgewerteten Resultate sind durch Messreihen entstanden, die einen positiven Hypochlorittest ergeben haben (Abbildung 4-1), der sicherstellt, dass es sich bei den Elektrodenreaktionen um die erwünschten Reaktionen handelte. Die Lösung färbte sich dabei meist dunkelblau bis schwarz. Das zeigt, dass die Nachweisgrenze deutlich überschritten wurde und beweist, dass sich Chlor gebildet (Gl. 4-1) und weiter zu Hypochlorit reagiert hat(Gl. 4-2).

Abbildung 4-1:

Bild eines positiven Hypochlorit-Nachweises

$$2Cl_{(aq)}^{-} \to Cl_{2(g)} + 2e^{-}$$
Gl. 4-1
$$Cl_{2(g)} + 2OH_{(aq)}^{-} \to Cl_{(aq)}^{-} + ClO_{(aq)}^{-} + H_2O$$
Gl. 4-2

Die Entstehung von Chlorgas konnte man gelegentlich riechen, da die Reaktion zum Hypochlorit nicht vollständig ablief. Auch die Bildung von Gasblasen an der Anode waren ein Indiz für die Entstehung von Chlorgas (Abbildung 4-2).

Abbildung 4-2:

Bild der Gasentwicklung an der Graphitanode

Diese Gasbläschen wurden durch das Rühren in die Lösung transportiert, wo sie mit der entstandenen Lauge eine Reaktion eingingen. Der pH-Wert der Lösung veränderte sich leicht durch die Elektrolyse,

da nicht die gesamte entstandene Natronlauge mit dem entstandenen Chlor reagierte. Der pH-Wert wurde bei langer Elektrolysezeit mit einer hohen Stromstärke leicht basisch, was man am pH-Papier ablesen konnte. Beim Messen des pH-Werts an der Kathodenoberfläche, fiel auf, dass er stark basisch war. Das bestätigt die Entstehung von Wasserstoff und Hydroxidionen an der Kathode (Gl. 4-3).

 $2H_2O + 2e^- \rightarrow H_{2(g)} + 2OH_{(ag)}^-$

Die Entstehung des Wasserstoffs ließ sich auch durch die Gasentwicklung an der Kathode beobachten (Abbildung 4-3).

Abbildung 4-3: Bild der Gasentwicklung an einer Magnesiumkathode

Dadurch zeigte sich, dass die erwünschte Elektrolyse mit den verwendeten Elektrodenmaterialien vonstatten ging und in der Gesamtgleichung wie folgt aussieht (Gl. 4-4).

$$H_2 0 + Cl^-_{(aq)} \to H_{2(g)} + Cl0^-_{(aq)}$$
 Gl. 4-

Da somit an beiden Elektroden Gase entstanden sind und die Elektroden selber nicht an der potentialliefernden Redoxreaktion teilnahmen, handelte es sich hierbei um zwei Gaselektroden, obwohl bei der Anode das Chlor anschließend noch weiter reagierte.

Wenn man die Nernst-Gleichungen (Gl. 2-21) für die Kathode (Gl. 4-5) und Anode (Gl. 4-6) aufstellt, kann man, da die Raumtemperatur fast Standardbedingungen aufwies, die Standardtemperatur 298,15 K einsetzen. Dadurch ergibt sich mit dem Umrechnungsfaktor von natürlichem zum dekadischem Logarithmus ein Wert von 0,0592V für den Term R*T/F. Daraus kann man nun die rechnerisch ermittelte Zersetzungsspannung ohne Überspannung ermitteln (Gl. 4-7)

$$E_{(H_2/H^+)} = E_{(H_2/H^+)}^0 + \frac{R * T}{v_e * F} * \ln \frac{[H^+]}{[H_2]^{0.5}} = 0V + \frac{0.0592V}{1} lg \frac{10^{-7}}{1} = -0.4144V$$
Gl. 4-5

$$E_{(Cl^{-}/Cl_{2})} = E_{(Cl^{-}/Cl_{2})}^{0} + \frac{R * T}{v_{e} * F} * ln \frac{[Cl_{2}]^{0,5}}{[Cl^{-}]} = 1,36 + \frac{0,0592V}{1} lg \frac{1}{0,1} = 1,4192,V$$
Gl. 4-6

$$\Delta E = E_{(Cl^{-}/Cl_{2})} - E_{(H_{2}/H^{+})} = 1,4192V - (-0,4144V) = 1,8336V$$
Gl. 4-7

Diese beträgt somit 1,83 V, bei einer neutralen Lösung mit einer Kochsalzkonzentration von 0,1 mol/L.

Die in Versuch 4.2.1.2 ermittelte Zersetzungsspannung besaß den Mittelwert für eine

Magnesiumkathode und HB-Graphitelektrode von 4,0563V mit einer Standardabweichung von 0,0728 V. Wodurch eine Überspannung von 2,2227V entstand. Diese relativ hohe Überspannung lässt sich dadurch erklären, dass neben der Diffusions- und der Durchtrittsüberspannung auch noch eine relativ

Gl. 4-3

große Reaktionsüberspannung, sowohl für die Kathode als auch für die Anode auftrat, da an beiden Elektroden Gase entstanden sind. Dieses ist auch bei den praktisch genutzten Elektrolysen erkennbar, deren Zersetzungsspannungen in Tabelle 2-3 bereits aufgelistet wurden. Die Zersetzungsspannung ist dort geringer, da andere Kathodenmaterialien verwendet wurden und die Zusammensetzung der Graphitelektrode ebenfalls optimiert vorliegt.

4.2 Abhängigkeit der Stromstärke von der Spannung

Diese Versuche beschäftigen sich mit dem Verhalten der Abhängigkeit der Stromstärke von der angelegten Spannung. Diese Abhängigkeit ist sowohl von der Überspannung als auch von der Leitfähigkeit der Elektrolytlösung abhängig. Im Folgenden sollen die Messwerte auf diese Parameter hin untersucht werden. Zur Vereinfachung und zur besseren Übersicht werden im Textverlauf nur ausgewählte Diagramme gezeigt, die auf Tabellen beruhen, die im Anhang zu finden sind. Ebenfalls im Anhang sind weitere Diagramme vorhanden, die den Textverlauf zu sehr stören würden.

4.2.1 Abhängigkeit von der Eintauchtiefe

In diesem Kapitel werden die Einflüsse der Eintauchtiefe (l) der Anode und der Kathode diskutiert und miteinander verglichen.

4.2.1.1 Abhängigkeit von der Anodeneintauchtiefe

Beim Aufnehmen der Geraden wurde die Eintauchtiefe einer HB-Graphitelektrode geändert bei der Verwendung verschiedener Kathodenmaterialien.

Die erhaltenen Messwerte (Tabelle 0-1 bis Tabelle 0-12) wurden in einem Diagramm dargestellt und für jede Messreihe eine lineare Regression durchgeführt. Diese ergaben für die unterschiedlichen Kathodenmaterialien folgende Graphen (Abbildung 4-4, Abbildung 4-5 und Abbildung 4-6).

Abbildung 4-4: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Graphitanode mit einer Zinkkathode (Tabelle 0-10, Tabelle 0-11 und Tabelle 0-12)

Abbildung 4-5: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Graphitanode mit einer Magnesiumkathode (Tabelle 0-1,Tabelle 0-2 und Tabelle 0-3)

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Abbildung 4-6: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Graphitanode mit einer Aluminiumkathode (Tabelle 0-4, Tabelle 0-5 und Tabelle 0-6)

Hierbei fällt auf, dass bei der Verwendung von Magnesium und Zink die Zersetzungsspannung, sprich der Schnittpunkt mit der x-Achse, konstant bleibt, nicht aber bei der Nutzung einer Aluminiumkathode. Das erklärt sich dadurch, dass es zu der Bildung einer Oxidschicht kam, die die Wasserstoffabscheidung hemmt.

Die Zersetzungsspannung an der Magnesiumkathode ist höher als bei der Verwendung einer Zinkkathode. Somit ist die Überspannung von Wasserstoff an einer Zinkkathode geringer als an einer Magnesiumkathode. Dieses ist auch aus den folgenden Tabellen (Tabelle 0-74, Tabelle 0-77 und Tabelle 0-80), ersichtlich, in denen die Zersetzungsspannungen der einzelnen Messreihen miteinander verglichen werden.

Hierbei ist auch zu erkennen, dass die Aluminiumkathode die geringste Überspannung besitzt. Wenn man nun, die über die Graphen ermittelten y-Achsenabschnitt und den Leitwert gegen die Eintauchtiefe der Anode aufträgt (Abbildung 0-1 bis Abbildung 0-6 und Abbildung 0-11), erkennt man vor allem beim Magnesium ein lineares Verhalten. Dadurch kann man die Geradengleichung für die Abhängigkeit der Stromstärke von der Spannung bei Verwendung einer Magnesiumkathode aufstellen. Diese erzielt nur geringe Abweichungen zwischen den rechnerisch ermittelten Werten und den experimentell bestimmten Werten(Gl. 4-8)(Tabelle 0-78).

$$y = \left(7,011 \ \frac{mS}{cm} * l + 7,395 \ mS\right) * x - 26,43 \ \frac{mA}{cm} * l - 31,14 \ \frac{mA}{cm}$$
Gl. 4-8

Die lineare Abhängigkeit der Steigung, sprich der Leitwert, von der Eintauchtiefe, liegt an der Definition des Leitwerts. Er ist linear von dem durchwanderten Volumen für den Ladungstransport abhängig, welcher direktproportional zur Eintauchtiefe ist. Aufgrund dessen kommt es zu einer linearen Abhängigkeit des Leitwerts von der Eintauchtiefe.

FH AACHEN UNIVERSITY OF APPLIED SCIENC

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Das trifft ebenfalls beim Zink zu, wodurch man auch hier eine Gleichung aufstellen kann (Gl. 4-9), mit der man nur geringfügige Abweichungen von den ermittelten und berechneten Geraden erzielt (Tabelle 0-75).

$$y = \left(4,642\frac{mS}{cm} * l + 8,917mS\right) * x - 19,23\frac{mA}{cm} * l - 38,98\frac{mA}{cm}$$
Gl. 4-9

Allerdings ist das Verhalten beim Aluminium nicht durch eine Gleichung darstellbar, da kein lineares Verhältnis zwischen Leitwert und Eintauchtiefe besteht, da die Oberfläche und somit die Leitfähigkeit der Elektrode verändert wird. Deshalb kann man keine Berechnung der Abhängigkeit der Spannung zur Stromstärke vornehmen. Aufgrund dessen wurde die Aluminiumelektrode nicht dazu verwendet andere Abhängigkeiten zu untersuchen.

4.2.1.2 Abhängigkeit von der Kathodeneintauchtiefe

Wie zuvor bei der Abhängigkeit von der Anodeneintauchtiefe wurde auch hier eine HB-Graphitelektrode benutzt. Die Abhängigkeit von der Kathodeneintauchtiefe wurde für alle drei Materialien untersucht und die Materialien miteinander verglichen. Hier wurde ebenso wie bei der Anodeneintauchtiefe ein linearer Zusammenhang zwischen der Steigung der Geraden und der Eintauchtiefe vermutet. Die ermittelten Messwerte (Tabelle 0-13 bis Tabelle 0-28) wurden in Graphen dargestellt (Abbildung 4-7, Abbildung 4-8 und Abbildung 4-9).

Abbildung 4-7: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Magnesiumkathode mit einer Graphitanode (Tabelle 0-25, Tabelle 0-26, Tabelle 0-27 und Tabelle 0-28)

Abbildung 4-8: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Zinkkathode mit einer Graphitanode (Tabelle 0-20, Tabelle 0-21, Tabelle 0-22, Tabelle 0-23 und Tabelle 0-24)

Abbildung 4-9: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Eintauchtiefe der Aluminiumkathode mit einer Graphitanode (Tabelle 0-13, Tabelle 0-14, Tabelle 0-15, Tabelle 0-16, Tabelle 0-17, Tabelle 0-18 und Tabelle 0-19)

4 Diskussion der Ergebnisse

Dabei erkennt man, dass nur bei der Magnesiumkathode die Zersetzungsspannung unabhängig von den Eintauchtiefe ist. Dieses sieht man auch, wenn man die Standardabweichungen der Zersetzungsspannungen miteinander vergleicht (Tabelle 0-81, Tabelle 0-83 und Tabelle 0-85). Dabei ist die Überspannung bei Aluminium am geringsten und die bei Magnesium am höchsten, wie schon im Versuch gezeigt. Da nur bei der Magnesiumkathode eine Unabhängigkeit der Überspannung von der Eintauchtiefe gegeben ist, wird diese in den anderen Versuchen als Kathode verwendet. Zudem zeigt sich, dass beim Auftragen der ermittelten Geradenparameter in Abhängigkeit der Kathodeneintauchtiefe (Abbildung 0-7 bis Abbildung 0-12) nur bei der Magnesiumkathode eine lineare Abhängigkeit besteht. Bei den beiden anderen Materialien ist dieses nicht der Fall. Aufgrund dessen kann man die Geradengleichung für die Abhängigkeit der Stromstärke von der Spannung bei gegebener Elektrodenanordnung nur für Magnesium rechnerisch ermitteln (Gl. 4-10). Dadurch entsteht nur eine geringe Abweichung zwischen den berechneten und ermittelten Werten (Tabelle 0-82).

$$y = \left(3,821\frac{mS}{cm} * l + 16,51 mS\right) * x - 14,7\frac{mA}{cm} * l - 68,45\frac{mA}{cm}$$
Gl. 4-10

Bei Zink wird der Leitwert kaum durch die Eintauchtiefe der Zinkelektrode beeinflusst. Lediglich der Achsenabschnitt wird verändert, allerdings ohne erkennbaren Trend. Deshalb ist sie ungeeignet für die Verwendung in den Versuchen, da sie keine reproduzierbaren Werte liefert. Bei der Aluminiumkathode ist der Fall, dass die Zersetzungsspannung und somit die Überspannung mit steigender Messreihennummer ansteigt, auch wenn die Eintauchtiefe konstant bleibt. Dies lässt sich auf eine Passivierung der Elektrode zurückführen (Abbildung 4-10) (Abbildung 4-11).

Abbildung 4-10:

Abbildung einer Aluminiumelektrode nach Elektrolyse mit Veränderung der Oberfläche durch Passivierung

Abbildung 4-11: Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der Passivierung der Aluminiumkathode bei gleicher Eintauchtiefe (Tabelle 0-13 Tabelle 0-14 und Tabelle 0-15)

Die Steigung und somit der Leitwert der Lösung bleibt hierbei relativ konstant und sinkt nur im geringen Maße im Laufe der Zeit (Tabelle 0-86). Für die weiteren Versuche wird deshalb Magnesium als Kathode verwendet, da es die reproduzierbarsten Werte liefert.

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

4.2.2 Abhängigkeit von den Elektrodenarten

Die unterschiedlichen Elektrodenmaterialien wurden miteinander verglichen, um die optimale Kombination der gegebenen Materialien zu ermitteln.

4.2.2.1 Abhängigkeit vom Anodenmaterial

Für die Anode wurden verschiedene Minen aus Graphit verwendet und die verschiedenen Härtegrade miteinander verglichen. Die dazu aufgenommenen Werte (Tabelle 0-29 bis Tabelle 0-42) wurden in Diagrammen dargestellt.

Mit einer Mine des Härtegrads 2H wurde folgendes Diagramm erstellt (Abbildung 4-12):

Abbildung 4-12: Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer 2H-Graphitanode mit einer Magnesiumkathode (Tabelle 0-29 und Tabelle 0-30)

Im Diagramm lässt sich erkennen, dass die zweite Gerade von der ersten Geraden abweicht. Bei der 2H-Elektrode trat das Problem auf, dass man die Messgeraden sehr zügig aufnehmen musste, da ansonsten die Schwankungen der Messwerte so stark waren, dass deren Aufnahme nicht mehr möglich war.

Die damit ermittelte Zersetzungsspannung sowie die Steigung (Leitwert) und der y-Achsenabschnitt besaßen die in der folgenden Tabelle dargestellten Mittelwerte und Standardabweichungen (Tabelle 0-87). Die Auswertung der Messreihen der H-Graphitelektroden ergab folgendes Diagramm (Abbildung 4-13).

Abbildung 4-13: Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer H-Graphitanode mit einer Magnesiumkathode (Tabelle 0-31, Tabelle 0-32, Tabelle 0-33 und Tabelle 0-34)

Hierbei ist eine deutliche Abweichung der Messgeraden voneinander zu erkennen, woraus man eine schlechte Reproduzierbarkeit ableiten kann (siehe Kapitel 4.2.5). Dadurch sind H-Graphitelektroden nicht gut geeignet für die Messungen. Dieses sieht man auch an den ermittelten Mittelwerten und Standardabweichungen der verschiedenen Parameter (Tabelle 0-88).

Zudem fällt auf, dass bei der ersten Elektrode eine wesentlich höhere Veränderung der Messwerte zwischen der ersten und der zweiten Gerade liegt, wodurch gezeigt wird, dass die Elektroden sich während einer Elektrolyse trotz gleicher Härte nicht identisch verhalten. Aufgrund dessen lassen sich die Messabweichungen nicht rechnerisch beheben.

Anders sieht es bei der HB- Graphitelektroden aus. In diesem Versuch wurde eine neue HB-Graphitelektrode verwendet und nicht eine aus älteren Beständen. Beim Vergleich der aufeinanderfolgenden Geraden, die in Abbildung 4-14 dargestellt sind, erkennt man, dass zwischen den Messwerten der ersten und zweiten Messung einer Elektrode kaum ein Unterschied besteht und sich die Geradengleichung kaum ändert. Allerdings ist keine 100% Reproduzierbarkeit zwischen zwei verschiedenen HB-Elektroden gegeben, was unter anderem an der Tatsache liegt, dass man durch das Auf- und Abbauen der Elektrodenkombination keine abweichungsfreie Anordnung erzielen konnte.

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Abbildung 4-14: Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer HB-Graphitanode mit einer Magnesiumkathode (Tabelle 0-35, Tabelle 0-36, Tabelle 0-37 und Tabelle 0-38)

Die Abweichungen der Parameter sind im Anhang dargestellt (Tabelle 0-89). Die Abweichungen kommen vor allem von dem Vergleich der zwei HB-Graphitelektroden. Eine und dieselbe HB-Graphitelektrode kann andererseits sehr reproduzierbare Werte aufnehmen.

Dieses sieht man auch bei der B- und der 2B-Graphitelektroden, deren Verhalten in Abbildung 4-15 und Abbildung 4-16 dargestellt sind.

Abbildung 4-15: Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer B-Graphitanode mit einer Magnesiumkathode (Tabelle 0-39 und Tabelle 0-40)

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Abbildung 4-16: Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer 2B-Graphitanode mit einer Magnesiumkathode (Tabelle 0-41 und Tabelle 0-42)

Hierbei fällt auch das hohe Bestimmtheitsmaß der Geraden auf, sowie dass die Abweichungen der Messwerte im unteren Teil der Gerade stärker ausgeprägt sind als im oberen. Die Abweichungen der einzelnen Parameter voneinander sind in den beiden folgenden Tabellen aufgeführt (Tabelle 0-90 und Tabelle 0-91)

Betrachtet man nun alle Abweichungen im Vergleich miteinander und stellt sie in einem Diagramm dar (Abbildung 4-17), fällt auf, dass die Abweichungen bei einem weicheren Härtegrad geringer ausfallen und bei einer Härte von HB ein Minimum vorhanden ist.

Abbildung 4-17: Diagramm zum Vergleich der Standardabweichungen der ermittelten Parameter in Abhängigkeit des Härtegrads der Graphitanode (Tabelle 0-94)

Das Diagramm zeigt, dass die Erfassung der Messwerte mit einer Graphitelektrode der Stärke HB am reproduzierbarsten sind, zudem tritt bei den weicheren Elektroden ein Elektrodenabrieb ein, der schneller zur Schwarzfärbung der Lösung führt.

Das Verhalten der gemittelten Zersetzungsspannung ist in der Abbildung 4-18 dargestellt.

Abbildung 4-18: Diagramm zum Vergleich der Zersetzungsspannung bei verschiedenen Härtegraden der Graphitanode

Die ermittelte Zersetzungsspannung nimmt beim Vergleich der Minen 2H und HB deutlich zu, was allerdings auch an den Messschwankungen liegen kann. Diese Schwankung der Zersetzungsspannung rührt von der unterschiedlichen Elektrodenoberfläche her, die die Überspannung beeinflussen kann und somit auch die Zersetzungsspannung.

4.2.2.2 Abhängigkeit vom Kathodenmaterial

Als Kathodenmaterial fanden Magnesium, Zink und Aluminium Verwendung. Die Unterschiede wurden in Kapitel 4.2.1.2 diskutiert, wobei sich zeigte, dass Magnesium das optimale Kathodenmaterial für die Messungen darstellt.

4.2.3 Abhängigkeit von der Konzentration

Um die Abhängigkeit des Verhaltens der Stromstärke zur Spannung zu untersuchen, wurden zur Auswertung der erhaltenden Messwerte die Messwertreihen (Tabelle 0-43 bis Tabelle 0-51) in ein Diagramm übertragen und eine lineare Regression durchgeführt. Dieses ergab folgendes Diagramm (Abbildung 4-19).

Abbildung 4-19: Diagramm der Abhängigkeit der Strom-Spannung-Gerade von der Konzentration der Natriumchloridlösung (Tabelle 0-43, Tabelle 0-44, Tabelle 0-45, Tabelle 0-46, Tabelle 0-47, Tabelle 0-48, Tabelle 0-49 und Tabelle 0-50)

Hierbei ist zu erkennen, dass die Konzentration der Lösung keinen deutlichen Einfluss auf die Zersetzungsspannung und somit die Überspannung besitzt, da der Schnittpunkt mit der x-Achse kaum variiert, und diese Variation durch Ungenauigkeiten in den Messungen zu erklären sind. Die einzelnen durch das Diagramm ermittelten Überspannungen sind in Tabelle 4-1 dargestellt.

c(NaCl)	Zersetzungsspannung
in mol/L	in V
0,0750	4,695
0,0500	4,552
0,0250	4,922
0,0100	4,710
0,0050	4,876
0,0025	4,320
0,0010	4,833
Mittelwert	4.701

0,210

Tabelle 4-1:Auflistung der berechneten Zersetzungsspannungen für die verschiedenen
Konzentrationen

Der Mittelwert der Zersetzungsspannungen beträgt somit 4,701 V und besitzt eine Standardabweichung von 0,210 V bei der Verwendung einer Magnesiumkathode mit einer Eintauchtiefe von 2 cm und einer Graphitelektrode mit einer Eintauchtiefe von 1,5 cm. Die Steigung(Gl. 4-11) der Geraden ist dabei identisch mit dem Leitwert (Gl. 4-12) der Lösung.

Standardabw.

$$m = \frac{\Delta x}{\Delta y} = \frac{\Delta I}{\Delta U}$$
Gl. 4-11
$$L = \frac{I}{U - U_{zer.}}$$
Gl. 4-12

Da es sich hierbei um eine Elektrolyse handelt, wird der Spannung die Zersetzungsspannung abgezogen, um den Leitwert ermitteln zu können, da während dieser Zeit die Elektrolysezelle nicht als *Ohm*scher Widerstand fungiert. Aufgrund dessen ist die Steigung identisch mit dem Leitwert der Lösung (Gl. 4-13).

$$L = m$$
 Gl. 4-13

Wenn man nun den Leitwert der Lösung gegen die Konzentration aufträgt, erhält man eine Gerade, da der Abstand und die Eintauchtiefe der Elektroden konstant sind (Abbildung 4-20).

Abbildung 4-20:Diagramm der Abhängigkeit des Leitwerts des Elektrolyten von der
Elektrolytkonzentration

Dadurch lässt sich erkennen, dass sich die Natriumchloridlösung weitestgehend wie ein idealer Elektrolyt verhält und dass deshalb die Konzentration noch nicht so hoch ist, dass es zu starken Interaktionen zwischen den einzelnen Ionen kommt und sie sich weitestgehend unabhängig voneinander in der Lösung bewegen können. Da die Flächen der Elektroden geometrisch sehr unterschiedlich sind, kann keine Berechnung der spezifischen Leitfähigkeit erfolgen. Allerdings ist aufgrund der beibehaltenen Elektrodenanordnung ein Vergleich der Leitwerte, wie die der spezifischen Leitfähigkeit möglich, und somit auch der lineare Verlauf des Graphen zu erklären. Die geringe Schwankung der Werte ist hierbei durch die leichte Veränderung der Abstände zu erklären, da es nicht möglich war, eine exakte Genauigkeit der Eintauchtiefen sowie des Abstandes zu gewährleisten.

Auch kommt es zu einem linearen Verhalten des y-Achsen-Abschnitts zur Konzentration der Lösung (Abbildung 4-21), da die Zersetzungsspannung und somit die Überspannung weitestgehend konstant bleibt und die Steigung ebenfalls einen lineares Verhalten zeigt.

Diagramm der Abhängigkeit des y-Achsenabschnittes von der Konzentration der Natriumchloridlösung

Somit kann man sowohl die Steigung als auch den Achsenabschnitt über die Abhängigkeit von der Konzentration beschreiben. Dieses ermöglicht eine rechnerische Bestimmung der Geradengleichung der Abhängigkeiten der Stromstärke von der Spannung bei identischer Elektrodenanordnung über die Konzentration (Gl. 4-14).

$$y = 266, 6\frac{L * mS}{mol} * c * x + 1246\frac{L * mA}{mol} * c$$
Gl. 4-14

Die damit berechneten Werte weichen bei geringer Konzentration nur geringfügig von den zuvor ermittelten Werten ab. In der folgenden Tabelle (Tabelle 4-2) sind die Abweichungen dargestellt (berechnet-ermittelt).

Tabelle 4-2:Auflistung der Abweichungen der ermittelten Werte von den berechneten Werten von
der Konzentrationsabhängigkeit

c(NaCl)	Abweichung	
in mol/L	y-Abschnitt	Steigung
0,0750	2,849	-0,502
0,0500	-5,543	0,859
0,0250	2,551	-0,201
0,0100	-0,132	0,016
0,0050	0,069	0,008
0,0025	0,295	-0,170
0,0010	-0,090	-0,009

Dabei fällt auf, dass die Abweichung bei höheren Konzentrationen größer sind, was an der Abweichung vom Idealverhalten liegt.

4.2.4 Abhängigkeit von der Rührfischgeschwindigkeit

Es wurde untersucht inwieweit die Rührfischgeschwindigkeit die Reproduzierbarkeit der Messgeraden beeinflusst. Hierbei ist wichtig, dass es nicht möglich war mit den verwendeten Geräten nach dem Umstellen exakt die gleiche Geschwindigkeit zu erzielen. Deshalb war es sinnvoll, einen Geschwindigkeitsbereich auszuwählen, bei dem trotz schwankender Geschwindigkeit die Gerade konstant bleibt und die Geschwindigkeit keinen oder nur geringen Einfluss auf die Gerade besitzt. Als Graphitelektrode wurde hierbei eine 2B-Graphitelektrode verwendet und die Kathode bestand aus Magnesium. Die Messwerte (Tabelle 0-52 bis Tabelle 0-57) wurden in 2 Diagrammen dargestellt. Das erste Diagramm vergleicht die unterschiedlichen Rührfischgeschwindigkeiten beim Aufnehmen der ersten Gerade (Abbildung 4-22) und das andere Diagramm beschäftigt sich mit der zweiten Messung der jeweiligen Geschwindigkeit (Abbildung 4-23).

Abbildung 4-22: Diagramm der Abhängigkeit der ersten Strom-Spannung-Gerade von der Rührfischgeschwindigkeit (Tabelle 0-52, Tabelle 0-54 und Tabelle 0-56)

Abbildung 4-23: Diagramm der Abhängigkeit der zweiten Strom-Spannung-Gerade von der Rührfischgeschwindigkeit (Tabelle 0-53, Tabelle 0-54 und Tabelle 0-57)

Hierbei ist zu erkennen, dass die beiden bei höherer Rührfischgeschwindigkeit aufgenommenen Messreihenpaare sich kaum voneinander unterscheiden und somit eine Rührfischgeschwindigkeitsänderung keinen Einfluss auf die Messgerade besitzt. Bei niedriger Geschwindigkeit kommt es zur Änderung der Messgerade, weshalb für die Messungen eine Rührfischgeschwindigkeit zwischen 261 Umdrehungen/min und 411 Umdrehungen/min am sinnvollsten ist. Um die Veränderungen bei der Rührfischgeschwindigkeit zu vergleichen wurden auch sie jeweils in einem Diagramm pro Geschwindigkeit dargestellt (Abbildung 0-15, Abbildung 0-16 und Abbildung 0-17). Darin ist zu erkennen, dass die Änderung der Messwerte bei der kleinsten Rührfischgeschwindigkeit am größten ist und bei höherer Rührfischgeschwindigkeit die Abweichung abnimmt. Dadurch wird die Annahme von der optimalen Geschwindigkeitseinstellung bestätigt, da es bei ausreichender Geschwindigkeit zu keiner großen Veränderung der Messgerade kommt.

4.2.5 Haltbarkeit der Graphitelektroden

In diesem Abschnitt wird die Haltbarkeit der verschiedenen Graphitelektroden miteinander verglichen, um festzustellen, in welchem zeitlichen Bereich eine Messung mit welcher Graphitelektrodenart am sinnvollsten ist und die Werte nicht oder nur gering schwanken. Beim Elektrolysieren spalteten sich die Graphitelektroden nach einer gewissen Zeit zuerst auf (Abbildung 4-24).Nach einer weiteren Zeitspanne zerfielen sie stark (Abbildung 4-25), was man an einem starken Abfall der Messwerte ablesen konnte.

Abbildung 4-24: Foto der Aufspaltung der Graphitelektrode während der Elektrolyse

Abbildung 4-25: Zerfall der Graphitelektrode während der Elektrolyse

Durch die Graphitpartikel färbte sich die Lösung mit der Zeit schwarz (Abbildung 4-26). Der Stromfluss stoppte erst dann, wenn die Elektrode nicht mehr in die Lösung eintauchte.

Abbildung 4-26: Foto der Schwarzfärbung der Elektrolyselösung durch den Zerfall der Graphitanode

Die ermittelten Daten (Tabelle 0-58 bis Tabelle 0-72) wurden in einem Diagramm (Abbildung 4-27) dargestellt, wobei jeweils eine Farbe in ihren unterschiedlichen Intensitäten für je einen Härtegrad steht.

Abbildung 4-27: Abhängigkeit der Messwerte von der Zeit und dem Anodenmaterial (Tabelle 0-58 bis Tabelle 0-72)

Hierbei ist zu erkennen, dass die verschiedenen Härtegrade eine unterschiedliche Haltbarkeit während der Elektrolyse besitzen, welche mit steigendem Graphitanteil zunimmt. Die Messreihen für die Spannung, die von den oberen Kurven beschrieben werden, schwanken dabei anfangs kaum und verändern sich dann im Laufe der Zeit immer mehr. Die unteren Kurven, die die Stromstärke in Abhängigkeit der Zeit beschreiben, ändern sich wesentlich schneller als die Messwerte der Spannung. Um die Konstanz der Messwerte für die einzelnen Härtegrade anschaulicher zu gestalten, wurden sie

4 Diskussion der Ergebnisse

in je einem Diagramm für jede Stärke dargestellt (Abbildung 0-18, Abbildung 0-19, Abbildung 4-28, Abbildung 0-20 und Abbildung 0-21). Dabei fällt auf, dass die 2H- Graphitelektroden länger reproduzierbare Werte erzeugen als die H- Graphitelektroden, welches schon in Kapitel 4.2.2.1 ersichtlich war. Ein optimales Verhalten zeigen hierbei die HB- Graphitelektroden, bei denen sich sowohl die Stromstärke als auch die Spannung über einen Zeitraum von 25 Minuten nur mit einer geringen Abweichung änderten (Abbildung 4-28). Dieses wird auch in Tabelle 4-3 ersichtlich.

Tabelle 4-3:Mittelwert und Abweichung der Messwerte bei einer HB-Graphitanode in einem
Zeitraum von 25 Minuten

Im Zeitraum von	Spannung	Stromstärke
300s bis 1800s	in mV	in mA
Mittelwert	15,756	315
Standardabweichung	0,034	3,162
prozentuelle		
Standardabweichung	0,22%	1,00%

Dadurch erzielten die HB- Graphitelektroden die reproduzierbarsten Messwerte wie schon zuvor in Kapitel 4.2.2.1 gezeigt. Die zweitbeste Reproduzierbarkeit besitzen hierbei erneut die 2B-Graphitelektroden (Abbildung 0-21).

Aufgrund dessen wird die Annahme, dass die HB-Graphitanode die optimale Graphitelektrodenwahl darstellt, bestätigt.

5 Zusammenfassung

5 Zusammenfassung

Diese Arbeit beschäftigte sich mit der Elektrolyse einer wässrigen Natriumchloridlösung, die unter Änderung verschiedener Parameter durchgeführt wurde und zur Desinfektion von wässrigen Lösungen genutzt werden kann. Hierbei wurde über die Abhängigkeit der Stromstärke von der Spannung während der Elektrolyse die Leitfähigkeit einer Natriumchloridlösung untersucht. Zudem wurde untersucht, welchen Einfluss verschiedene Parameter auf die Überspannung besitzen. Hierbei bestätigten sich die verschiedenen im Theorieteil beschriebenen Messwerte in ihrem Verhalten während der Elektrolyse.

Die Ergebnisse zeigen, dass die Nutzung einer HB-Graphitelektrode als Anode und einer Magnesiumkathode die reproduzierbarsten Werte erzeugen und somit genauere Einstellungen möglich sind. Auch ermöglicht eine höhere Elektrolytkonzentration eine bessere Leitfähigkeit und somit einen schnelleren Umsatz des Elektrolyten zu dem gewünschten Produkt. Außerdem reicht auch eine sehr geringe Elektrolytkonzentration für die gewünschte Reaktion aus. Das bedeutet, dass eine geringe Menge an Natriumchlorid ausreicht, um die gewünschten Effekte durch Elektrolyse zu erzeugen. Zudem zeigen die Versuche, dass der Abrieb und somit die Verschmutzung des Elektrolyten durch Graphit abhängig ist von dem Härtegrad der Graphitanode. Bei den Versuchen erzielte eine HB-Graphitelektrode die vergleichsweise optimalsten Ergebnisse, da sie sich am längsten verwenden ließ und am wenigsten zu Verunreinigungen führte.

6 Ausblick

Bei dieser Bachelorarbeit wurden vor allem die Unterschiede bei der Verwendung verschiedener Elektrodenmaterialien behandelt. Dies könnte man durch weitere Versuche mit anderen Materialien ergänzen. Zudem wäre es interessant die Möglichkeiten der Desinfektion von Lösungen zu untersuchen, ebenso inwieweit die Folgereaktion zu Hypochlorit durch den pH-Wert gesteuert werden kann, um die Desinfektionswirkung zu verbessern. Dieses sollte ursprünglich bereits im praktischen Teil der Bachelorarbeit neben den Vergleich der verschiedenen Elektroden untersucht werden. Die Untersuchung der desinfizierenden Wirkung des entstehenden Hypochlorit ebenso wie der Vergleich der Oxidationskraft des Hypochlorit mit anderen Oxidationsmittel wurden allerdings aufgrund von Zeitmangel nicht durchgeführt.

Anhang

Abkürzungsverzeichnis

Abkürzung	Bezeichnung	
F _{elek.}	Beschleunigung durch das elektrische Feld	
$\overrightarrow{K_R}$	Stokessche Reibung	
$\overrightarrow{v_{max}}$	maximale Geschwindigkeit	
$ec{E}$	Feldstärke	
$L_{A_aB_b}$	Löslichkeitsprodukt	
$ec{v}$	Geschwindigkeit	
ΔΕ	berechnete Zersetzungsspannung ohne Überspannung	
$\Delta_{\rm R} G$	freie Enthalpie	
A	Querschnitt der Elektrode	
a	Aktivität	
С	Stoffmengenkonzentration	
C-Atom	Kohlenstoffatom	
E _(Red/Ox)	Potential einer Halbzelle	
EMK	Elektromotorische Kraft	
E ^o _(Red/Ox)	Potential einer Halbzelle unter Standardbedingungen	
F	Faraday Konstante	
Ι	Stromstärke	
i	Stromdichte	
i.	kathodische Teilstromdichte	
i+	anodische Teilstromdichte	
i ₀	Austauschstromdichte	
К	Gleichgewichtskonstante	
K _K	Steigungskoeffizient für die molare Leitfähigkeit	
L	Leitwert	
I	Elektrodenabstand	
Ľ	Leitwert des Anion	

L+	Leitwert des Kations
m	Steigung einer Geraden
m	Masse
MOs	Molekülorbital
р	Druck
PVC	Polyvinylchlorid
R	Ohmscher Wiederstand
R _{Durch}	Durchtrittswiderstand
r _i	Radius des solvatisierten Ions
R _i	Innenwiderstand einer Lösung
S _{Ox}	Oxidierte Spezies
S _{Red}	Reduzierte Spezies
Т	Temperatur
t	Zeit
U	Spannung
U _{KI}	Klemmspannung
Uz	Zersetzungsspannung
Ve	Anzahl der aufgenommenen oder abgegebenen Elektronen pro Formeleinheit
z e ₀	Ladung eines Ions
α	Dissoziationsgrad
α	Symmetriefaktor
η	Viskosität
η	Überspannung
η_{Anode}	Überspannung an der Anode
$\eta_{Kathode}$	Überspannung an der Kathode
κ	spezifische Leitfähigkeit
Λ_∞	molare Grenzleitfähigkeit
λ_{∞}^{-}	molare Grenzleitfähigkeit des Anions
λ_{∞}^{+}	molare Grenzleitfähigkeit des Kations
$\Lambda_{ m eq}$	äquivalent Leitfähigkeit
Λ_{m}	molare Leitfähigkeit

Anhang

Gleichungsverzeichnis

Gl.	. 2-1	7
Gl.	. 2-2	7
Gl.	. 2-3	8
Gl.	. 2-4	8
Gl.	2-5	8
Gl	2-6	8
Gl.	2-7	9
Gl	2-8	9
Gl	2-9	9
Gl	2-10	10
GI.	2-11	10
GI.	2-17	11
GI.	2-12	11
GI.	2-13	11
GI.	2 15	11
GI.	2 16	11
	2.17	12
	2.19	12
C1	2 10	.13
	2 20	.14
	2.21	.14
	2 22	.14
	2.22	.10
GI.	2.24	.10
GI.	2.25	.10
GI.	2 20	.1/
GI.	. 2-26	.1/
GI.	2.20	.18
GI.	2.28	.18
GI.	2.20	.18
Gl.	. 2-30	.19
Gl.	. 2-31	.19
Gl.	. 2-32	.19
Gl.	. 2-33	.19
Gl.	. 2-34	.19
Gl.	. 2-35	.19
Gl.	. 2-36	.19
Gl.	. 2-37	.20
Gl.	. 2-38	.20
Gl.	. 2-39	.20
Gl.	. 2-40	.21
Gl.	. 2-41	.21
Gl.	. 2-42	.21
Gl.	. 2-43	.21
Gl.	. 2-44	.21
Gl.	. 2-45	.22
Gl.	. 2-46	.22
Gl.	. 2-47	.22
Gl.	. 2-48	.23
		78

Gl. 2-49	23
Gl. 2-50	
GI 2-51	24
GI 2-52	24
GI 2-53	25
GI 2-54	23
Cl 2 55	27
Cl 2 56	27 20
01.2-50	20
GL 2-57	
GI 2 50	
GI. 2-59	
Gl. 2-60	
Gl. 2-61	
Gl. 2-62	
Gl. 2-63	
Gl. 2-64	32
Gl. 2-65	32
Gl. 2-66	32
Gl. 2-67	32
Gl. 2-68	
Gl. 2-69	
Gl. 2-70	
GI 2-71	35
GI 2-72	35
GI 2-73	35
GI 2-74	
Cl 2 75	
C1 2 76	
Cl 2 77	
Gl. 2-77	
Gl. 2-78	
GI. 2-79	
Gl. 4-1	
Gl. 4-2	
Gl. 4-3	53
Gl. 4-4	53
Gl. 4-5	53
Gl. 4-6	53
Gl. 4-7	53
Gl. 4-8	56
Gl. 4-9	57
Gl. 4-10	59
Gl. 4-11	67
Gl. 4-12	
GI 4-13	67
GI 4-14	67 60
····	

Abbildungsverzeichnis

Abbildung 2-1:	Darstellung der Abhängigkeit der Stromstärke von der Spannung	7	
Abbildung 2-2:	: Schematische Darstellung einer elektrolytischen Doppelschicht		
Abbildung 2-3:	Leitfähigkeit wässriger Elektrolytlösungen bei 18°C (Elektrochemie S. 20 Abb. 2	2-	
8)		9	
Abbildung 2-4:	Abhängigkeit der Äquivalentleitfähigkeit verschiedener wässriger		
Elektrolytlösungen	bei 25°C von c(eq) ((5) S.23, Abb. 2-10)	10	
Abbildung 2-5:	Schematischer Aufbau eines galvanischen Elements	12	
Abbildung 2-6:	Schematischer Aufbau des Daniell-Elements	13	
Abbildung 2-7:	Schematischer Aufbau einer Elektrolysezelle	15	
Abbildung 2-8:	Schematischer Aufbau der Elektrolyse eines Daniell-Elements	16	
Abbildung 2-9:	Schematische Darstellung einer Elektrode erster Art mit dem Redoxpaar		
Kupfer/Kupfer(II)ic	onen	17	
Abbildung 2-10:	Schematische Darstellung einer Elektrode zweiter Art am Beispiel einer		
Silberchloridelektro	ode	18	
Abbildung 2-11:	Schematische Darstellung einer Redoxelektrode mit dem Redoxpaar Fe ²⁺ /Fe ³⁺	20	
Abbildung 2-12:	Schematische Darstellung einer Wasserstoffelektrode	22	
Abbildung 2-13:	Schematische Darstellung der Abhängigkeit der Stromstärke von der		
Klemmspannung be	ei einer Elektrolyse	23	
Abbildung 2-14:	Schematische Darstellung des Einflusses des Potentials auf die		
Aktivierungsenergi	e der Durchtrittsreaktion	25	
Abbildung 2-15:	Abhängigkeit der Teilstromdichten von der Überspannung bei einem		
Symmetriefaktor vo	on 0,5	26	
Abbildung 2-16:	Abhängigkeit der Teilstromdichten von der Überspannung bei einem		
Symmetriefaktor gr	ößer als 0,5	26	
Abbildung 2-17:	Abhängigkeit der Stromdichte von der Überspannung	27	
Abbildung 2-18:	Abhängigkeit der Stromdichte von der Überspannung und der Polarisierbarkeit d	er	
Elektrode		27	
Abbildung 2-19:	Linearer Bereich der Abhängigkeit der Stromdichte von der Überspannung	28	
Abbildung 2-20:	Schematische Darstellung der <i>Tafel</i> geraden	28	
Abbildung 2-21:	Konzentrationsprofil um die Elektrode im Gleichgewicht	29	
Abbildung 2-22 [.]	Konzentrationsprofil um die Elektrode mit Konzentrationsgefälle	30	
Abbildung 2-23	Konzentrationsprofil um die Elektrode mit maximaler Verarmung an der		
Elektrodenoberfläc	ne	30	
Abbildung 2-24 [.]	Stromspannungskurve bei der Metallauflösung bei Bildung einer passiven	20	
Deckschicht (Elektr	cochemie S 221 Abb 4-36)	32	
Abbildung 2-25	Darstellung der Struktur der Graphits (http://daten didaktikchemie uni-		
havrenth de/umat/m	padifikationen-c2/graphitstruktur ing)	33	
Abbildung 2-26.	Elektrolyse einer neutralen Natriumchloridlösung zwischen einer Fisenkathode	55	
und einer Granhitar	ande (schematische Darstellung) ((5) S. 388 Abb 8-8)	35	
Abbildung 2-27.	Schematische Darstellung des Dianbragmaverfahren	36	
Abbildung 2-27.	Schematische Darstellung des Amalgamverfahren	30	
Abbildung 2-20.	Schematische Darstellung des Aufbaus des Membranverfahren	20	
Abbildung 2-29.	Darstellung der Dafstellung der Elektrodon am Stativ	50 16	
Abbildung 2-2	Schematische Deretellung der Verknünfung der Messgeröte mit den Elektroden	+0	
Addition Varanahar	schematische Datstehung der verknupfung der Messgerate mit den Elektroden	17	
Abbildung 2 2:	Pild der verwandeten Geröte während eines Verwahr	+/ /0	
Abbildung 3-3:	Calematicale Denstellung den Verlenünferne den Mersensite mit der El 1 (+ð	
Additional	Schematische Darstellung der Verknupfung der Messgerate mit den Elektroden	<u> </u>	
bei den versuchen z	zur Handarkeit der Graphiteiektrogen	51	

Abbildung 4-1:	Bild eines positiven Hypochlorit-Nachweises	52
Abbildung 4-2:	Bild der Gasentwicklung an der Graphitanode	52
Abbildung 4-3:	Bild der Gasentwicklung an einer Magnesiumkathode	53
Abbildung 4-4:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der Gr	raphitanode mit einer Zinkkathode (Tabelle 0-10, Tabelle 0-11 und Tabelle 0-12)	55
Abbildung 4-5:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der Gr	raphitanode mit einer Magnesiumkathode (Tabelle 0-1, Tabelle 0-2 und Tabelle	
0-3)		55
Abbildung 4-6:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der Gr	raphitanode mit einer Aluminiumkathode (Tabelle 0-4, Tabelle 0-5 und Tabelle	
0-6)		56
Abbildung 4-7:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der M	agnesiumkathode mit einer Graphitanode (Tabelle 0-25, Tabelle 0-26, Tabelle	
0-27 und Tabelle 0-	28)	57
Abbildung 4-8:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der Zi	nkkathode mit einer Graphitanode (Tabelle 0-20, Tabelle 0-21, Tabelle 0-22,	
Tabelle 0-23 und Ta	abelle 0-24)	58
Abbildung 4-9:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Eintauchtiefe der Al	luminiumkathode mit einer Graphitanode (Tabelle 0-13, Tabelle 0-14, Tabelle	
0-15, Tabelle 0-16,	Tabelle 0-17, Tabelle 0-18 und Tabelle 0-19)	58
Abbildung 4-10:	Abbildung einer Aluminiumelektrode nach Elektrolyse mit Veränderung der	
Oberfläche durch Pa	assivierung	59
Abbildung 4-11:	Diagramm der Abhängigkeit der Stromstärke-Spannungs-Kurve von der	
Passivierung der Alt	uminiumkathode bei gleicher Eintauchtiefe (Tabelle 0-13 Tabelle 0-14 und Tabe	lle
0-15)	- · · · · · · · · · · · · · · · · · · ·	60
Abbildung 4-12:	Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer 2H-	-
Graphitanode mit ei	ner Magnesiumkathode (Tabelle 0-29 und Tabelle 0-30)	61
Abbildung 4-13:	Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer H-	
Graphitanode mit ei	ner Magnesiumkathode (Tabelle 0-31, Tabelle 0-32, Tabelle 0-33 und Tabelle	
0-34)		62
Abbildung 4-14:	Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer HB	-
Graphitanode mit ei	ner Magnesiumkathode (Tabelle 0-35, Tabelle 0-36, Tabelle 0-37 und Tabelle	
0-38)		63
Abbildung 4-15:	Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer B-	
Graphitanode mit ei	ner Magnesiumkathode (Tabelle 0-39 und Tabelle 0-40)	.63
Abbildung 4-16:	Diagramm zum Vergleich der Reproduzierbarkeit von Messwerten bei einer 2B-	
Graphitanode mit ei	ner Magnesiumkathode (Tabelle 0-41 und Tabelle 0-42)	.64
Abbildung 4-17:	Diagramm zum Vergleich der Standardabweichungen der ermittelten Parameter	in
Abhängigkeit des H	ärtegrads der Graphitanode (Tabelle 0-94)	64
Abbildung 4-18:	Diagramm zum Vergleich der Zersetzungsspannung bei verschiedenen	
Härtegraden der Gra	aphitanode	65
Abbildung 4-19:	Diagramm der Abhängigkeit der Strom-Spannung-Gerade von der Konzentratio	m
der Natriumchloridl	ösung (Tabelle 0-43, Tabelle 0-44, Tabelle 0-45, Tabelle 0-46, Tabelle 0-47,	
Tabelle 0-48, Tabel	le 0-49 und Tabelle 0-50)	66
Abbildung 4-20:	Diagramm der Abhängigkeit des Leitwerts des Elektrolyten von der	
Elektrolvtkonzentra	tion	68
Abbildung 4-21:	Diagramm der Abhängigkeit des v-Achsenabschnittes von der Konzentration de	er
Natriumchloridlösu	ng	68
Abbildung 4-22:	Diagramm der Abhängigkeit der ersten Strom-Spannung-Gerade von der	-
Rührfischgeschwind	ligkeit (Tabelle 0-52, Tabelle 0-54 und Tabelle 0-56)	70
<u> </u>		

Abbildung 4-23: Rührfischgeschwind	Diagramm der Abhängigkeit der zweiten Strom-Spannung-Gerade von der digkeit (Tabelle 0-53, Tabelle 0-54 und Tabelle 0-57) 70
Abbildung 4 24:	Foto der Aufsnaltung der Granhitelektrode während der Elektrolyse 71
Abbildung 4-24.	Zarfall der Graphitalaktrode während der Elektrolyse
Abbildung 4-25.	te den Sehuren fürbung den Elektroligeung durch den Zenfell der Crenkitere de
Abbildung 4-26: Fo	to der Schwarzfarbung der Elektrofyselosung durch den Zerfall der Graphitanode 71
Abbildung 4-27:	Abhängigkeit der Messwerte von der Zeit und dem Anodenmaterial (Tabelle 0-58
bis Tabelle 0-72)	
Abbildung 4-28:	Abhängigkeit der Messwerte von der Zeit bei einer HB-Graphitanode (Tabelle
0-65)	
Abbildung 0-1:	Abhängigkeit des Leitwerts von der Eintauchtiefe der Graphitanode mit einer
Zinkkathode	
Abbildung 0-2:	Abhängigkeit des v-Achsenabschnitt von der Eintauchtiefe der Graphitanode mit
einer Zinkkathode	121
Abbildung 0-3.	Abhängigkeit des Leitwerts von der Eintauchtiefe der Granhitanode mit einer
Magnesiumkathode	122
Abbildung 0_1.	Abhängigkeit des v-Achsenabschnitt von der Eintauchtiefe der Granhitanode mit
Abondung 0-4.	thode
Abbildung 0 5:	Abhängigkeit des Leitwerts von der Einteuchtiefe der Granhitanode mit einer
Abuminiumbathada	Abhangigkeit des Leitweits von der Eintadentiere der Orapintanode nitt einer
Aluminumkauloue	Abbängishait das v. Ashaanshashaitt van der Einteveltiefe der Crenkitere de mit
Additional U-0:	Aonangigkeit des y-Achsenaoschnitt von der Eintauchtiefe der Graphitanode mit
einer Aluminiumka	
Abbildung 0-7:	Abhangigkeit des y-Achsenabschnitt von der Eintauchtiefe der
Magnesiumkathode	mit einer Graphitanode
Abbildung 0-8:	Abhängigkeit des Leitwerts von der Eintauchtiefe der Magnesiumkathode mit
einer Graphitanode	
Abbildung 0-9:	Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Zinkkathode mit
einer Graphitanode	126
Abbildung 0-10:	Abhängigkeit des Leitwerts von der Eintauchtiefe der Zinkkathode mit einer
Graphitanode	
Abbildung 0-11:	Abhängigkeit des Leitwerts von der Eintauchtiefe der Aluminiumkathode mit
einer Graphitanode	
Abbildung 0-12:	Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der
Aluminiumkathode	mit einer Graphitanode
Abbildung 0-13:	Abhängigkeit der Strom-Spannungs-Kurve von der Konzentration >0,01 mol/L
(Tabelle 0-43, Tabe	lle 0-44, Tabelle 0-45 und Tabelle 0-46)
Abbildung 0-14:	Abhängigkeit der Strom-Spannungs-Kurve von der Konzentration <0,01 mol/L
(Tabelle 0-46, Tabe	lle 0-47, Tabelle 0-48, Tabelle 0-49, Tabelle 0-50 und Tabelle 0-51)132
Abbildung 0-15:	Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 136
Umdrehungen pro M	Minute (Tabelle 0-52, Tabelle 0-53)
Abbildung 0-16:	Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 261
Umdrehungen pro M	Minute (Tabelle 0-54, Tabelle 0-55)
Abbildung 0-17:	Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 411
Umdrehungen pro N	Minute (Tabelle 0-56, Tabelle 0-57)
Abbildung 0-18:	Abhängigkeit der Messwerte von der Zeit bei einer 2H-Graphitanode (Tabelle
0-58, Tabelle 0-59)	
Abbildung 0-19:	Abhängigkeit der Messwerte von der Zeit bei einer H-Graphitanode (Tabelle 0-60
Tabelle 0-61 Tabel	le 0-62, Tabelle 0-63 und Tabelle 0-64)
Abbildung 0-20	Abhängigkeit der Messwerte von der Zeit bei einer B-Graphitanode (Tabelle 0-66
Tabelle 0-67 Tabel	le 0-68 und Tabelle 0-69)
Abbildung 0-21	Abhängigkeit der Messwerte von der Zeit bei einer 2B-Graphitanode 136
	82

Tabellenverzeichnis

Tabelle 2-1:	Standardbedingungen	14
Tabelle 2-2:	Auflistung der verschiedenen Härtegrade von Graphitminen	34
Tabelle 2-3:	Vergleich der verschiedenen Chloralkalielektrolysen zur Herstellung von Chlor ((13)	S
496 Tab. 10.4))	39
Tabelle 3-1:	Auflistung der verwendeten Chemikalien	42
Tabelle 3-2:	Auflistung der benötigten Geräte	43
Tabelle 3-3:	Auflistung der benötigten Elektroden	44
Tabelle 3-4:	Auflistung der benötigten Messkolben	44
Tabelle 3-5:	Auflistung der benötigten Bechergläser	44
Tabelle 3-6:	Auflistung der verwendeten Konzentrationen der Natriumchloridlösungen	45
Tabelle 3-7:	Herstellungsangaben für die Verdünnung der Natriumchloridlösung zu den	
benötigten Ko	nzentrationen	45
Tabelle 3-8:	Auflistung der Einstellungen der Geräte während des Versuches	47
Tabelle 3-9:	Schematischer Aufbau einer Tabelle zur Notierung der gemessenen Werte	48
Tabelle 4-1:	Auflistung der berechneten Zersetzungsspannungen für die verschiedenen	
Konzentration	en	67
Tabelle 4-2:	Auflistung der Abweichungen der ermittelten Werte von den berechneten Werten vor	ı
der Konzentra	tionsabhängigkeit	69
Tabelle 4-3:	Mittelwert und Abweichung der Messwerte bei einer HB-Graphitanode in einem	
Zeitraum von 2	25 Minuten	73
Tabelle 0-1:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (1 cm)	86
Tabelle 0-2:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (2 cm)	86
Tabelle 0-3:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)	87
Tabelle 0-4:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (1 cm)	88
Tabelle 0-5:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (1 cm)	88
Tabelle 0-6:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (2 cm)	88
Tabelle 0-7:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (2 cm)	89
Tabelle 0-8:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)	89
Tabelle 0-9:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)	90
Tabelle 0-10:	Messwerttabelle zur Ab-hängigkeit von der Anodeneintauchtiefe (1 cm)	90
Tabelle 0-11:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (2 cm)	90
Tabelle 0-12:	Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)	91
Tabelle 0-13:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	92
Tabelle 0-14:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	92
Tabelle 0-15:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	93
Tabelle 0-16:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	93
Tabelle 0-17:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2,5 cm)	94
Tabelle 0-18:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)	94
Tabelle 0-19:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)	95
Tabelle 0-20:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (1,5 cm)	95
Tabelle 0-21:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	96
Tabelle 0-22:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	96
Tabelle 0-23:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)	97
Tabelle 0-24:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)	97
Tabelle 0-25:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (1 cm)	98
Tabelle 0-26:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (1,5 cm)	98
Tabelle 0-27:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)	99
Tabelle 0-28:	Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3,3 cm)	99

Tabelle 0-39: Messwerttabelle zum Vergleich Graphitanoden; 2H (1)			
Tabelle 0-30: Messwerttabelle zum Vergleich Graphitanoden; 2H (2). 100 Tabelle 0-31: Messwerttabelle zum Vergleich Graphitanoden; H (2). 101 Tabelle 0-32: Messwerttabelle zum Vergleich Graphitanoden; H (2). 101 Tabelle 0-33: Messwerttabelle zum Vergleich Graphitanoden; H (1). 102 Tabelle 0-34: Messwerttabelle zum Vergleich Graphitanoden; HB (1). 102 Tabelle 0-35: Messwerttabelle zum Vergleich Graphitanoden; HB (1). 103 Tabelle 0-36: Messwerttabelle zum Vergleich Graphitanoden; B (1). 103 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; B (1). 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; B (2). 104 Tabelle 0-42: Messwerttabelle zum Vergleich Graphitanoden; B (2). 104 Tabelle 0-43: Messwerttabelle zum Vergleich Graphitanoden; B (2). 105 Tabelle 0-41: Messwerttabelle zum Valängigkeit von der Konzentration 0,075 mol/L. 106 Tabelle 0-42: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L. 107 Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L. 107 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,	Tabelle 0-29:	Messwerttabelle zum Vergleich Graphitanoden; 2H (1)	100
Tabelle 0-31: Messwerttabelle zum Vergleich Graphitanoden; H (1)	Tabelle 0-30:	Messwerttabelle zum Vergleich Graphitanoden; 2H (2)	100
Tabelle 0-32: Messwerttabelle zum Vergleich Graphitanoden; H (4)	Tabelle 0-31:	Messwerttabelle zum Vergleich Graphitanoden; H (1)	100
Tabelle 0-33: Messwerttabelle zum Vergleich Graphitanoden; H (4)	Tabelle 0-32:	Messwerttabelle zum Vergleich Graphitanoden; H (2)	101
Tabelle 0-34: Messwerttabelle zum Vergleich Graphitanoden; HB (1) 101 Tabelle 0-35: Messwerttabelle zum Vergleich Graphitanoden; HB (2) 102 Tabelle 0-36: Messwerttabelle zum Vergleich Graphitanoden; HB (2) 103 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; HB (2) 104 Tabelle 0-38: Messwerttabelle zum Vergleich Graphitanoden; B (1) 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; B (2) 104 Tabelle 0-42: Messwerttabelle zum Vergleich Graphitanoden; 2B (1) 105 Tabelle 0-43: Messwerttabelle zum Abhängigkeit von der Konzentration 0,075 mol/L 106 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L 106 Tabelle 0-45: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L 107 Tabelle 0-46: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,002 mol/L 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-50: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-51: Messwer	Tabelle 0-33:	Messwerttabelle zum Vergleich Graphitanoden; H (4)	101
Tabelle 0-35: Messwerttabelle zum Vergleich Graphitanoden; HB (1) 102 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; HB (2) 103 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; HB (4) 103 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; B (1) 104 Tabelle 0-43: Messwerttabelle zum Vergleich Graphitanoden; B (2) 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; 2B (2) 105 Tabelle 0-42: Messwerttabelle zum Vergleich Graphitanoden; 2B (2) 105 Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L 106 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L 107 Tabelle 0-48: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L 107 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-48: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L 107 Tabelle 0-50: Me	Tabelle 0-34:	Messwerttabelle zum Vergleich Graphitanoden; H (3)	101
Tabelle 0-36: Messwerttabelle zum Vergleich Graphitanoden; HI (3) 102 Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; HI (3) 103 Tabelle 0-38: Messwerttabelle zum Vergleich Graphitanoden; BI (1) 104 Tabelle 0-40: Messwerttabelle zum Vergleich Graphitanoden; BI (2) 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; 2BI (1) 105 Tabelle 0-42: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/1. 106 Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/1. 106 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/1. 107 Tabelle 0-45: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/1. 107 Tabelle 0-46: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0005 mol/1. 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0005 mol/1. 107 Tabelle 0-48: Messwerttabelle zur Abhängigkeit von der Konzentration 0,000 mol/1. 108 Tabelle 0-51: Messwerttabelle zur Abhängigkeit von der Konzentration 0,000 mol/1. 108 Tabelle 0-52: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1). 110	Tabelle 0-35:	Messwerttabelle zum Vergleich Graphitanoden; HB (1)	102
Tabelle 0-37: Messwerttabelle zum Vergleich Graphitanoden; H (3) 103 Tabelle 0-38: Messwerttabelle zum Vergleich Graphitanoden; HB (4) 103 Tabelle 0-49: Messwerttabelle zum Vergleich Graphitanoden; B (1) 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; B (2) 104 Tabelle 0-42: Messwerttabelle zum Vergleich Graphitanoden; ZB (2) 105 Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L. 106 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L. 106 Tabelle 0-45: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L. 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L. 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L. 108 Tabelle 0-49: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L. 108 Tabelle 0-51: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L. 108 Tabelle 0-52: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1) 109 Tabelle 0-54: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 213 (2) 109	Tabelle 0-36:	Messwerttabelle zum Vergleich Graphitanoden; HB (2)	102
Tabelle 0-38:Messwerttabelle zum Vergleich Graphitanoden; HB (4)103Tabelle 0-39:Messwerttabelle zum Vergleich Graphitanoden; B (1)104Tabelle 0-40:Messwerttabelle zum Vergleich Graphitanoden; B (2)104Tabelle 0-41:Messwerttabelle zur Avblängigkeit von der Konzentration 0,075 mol/L106Tabelle 0-42:Messwerttabelle zur Avblängigkeit von der Konzentration 0,025 mol/L106Tabelle 0-43:Messwerttabelle zur Avblängigkeit von der Konzentration 0,015 mol/L106Tabelle 0-45:Messwerttabelle zur Avblängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-46:Messwerttabelle zur Avblängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-47:Messwerttabelle zur Avblängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-48:Messwerttabelle zur Avblängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-50:Messwerttabelle zur Avblängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Avblängigkeit von der Kührlischgeschwindigkeit 136 (1)109Tabelle 0-52:Messwerttabelle zur Avblängigkeit von der Rührlischgeschwindigkeit 136 (2)109Tabelle 0-54:Messwerttabelle zur Avblängigkeit von der Rührlischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Avblängigkeit von der Rührlischgeschwindigkeit 136 (2)110Tabelle 0-56:Messwerttabelle zur Avblängigkeit von der Rührlischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Avblängigkeit von der Rührlischgeschwindigkeit 411 (2)111Tabelle 0-58:	Tabelle 0-37:	Messwerttabelle zum Vergleich Graphitanoden; H (3)	103
Tabelle 0-39: Messwerttabelle zum Vergleich Graphitanoden; B (1) 104 Tabelle 0-41: Messwerttabelle zum Vergleich Graphitanoden; 2B (1) 105 Tabelle 0-42: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L 106 Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L 106 Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L 106 Tabelle 0-45: Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L 107 Tabelle 0-46: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L 107 Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L 107 Tabelle 0-48: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-50: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-51: Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L 108 Tabelle 0-52: Messwerttabelle zur Abhängigkeit von der Kührfischgeschwindigkeit 136 (2) 109 Tabelle 0-53: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2) 101 Tabelle 0-54: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit	Tabelle 0-38:	Messwerttabelle zum Vergleich Graphitanoden; HB (4)	103
Tabelle 0-40:Messwerttabelle zum Vergleich Graphitanoden; B (2)104Tabelle 0-41:Messwerttabelle zum Vergleich Graphitanoden; 2B (1)105Tabelle 0-42:Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L106Tabelle 0-43:Messwerttabelle zur Abhängigkeit von der Konzentration 0,015 mol/L106Tabelle 0-44:Messwerttabelle zur Abhängigkeit von der Konzentration 0,015 mol/L106Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,017 mol/L107Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)109Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-56:Messwerttabelle zur Haltbarkeit 121 (1)112Tabelle 0-57:Messwerttabelle zur Haltbarkeit 121 (1)112Tabelle 0-58:Messwerttabelle zur Haltbarkeit 121 (1)11	Tabelle 0-39:	Messwerttabelle zum Vergleich Graphitanoden; B (1)	104
Tabelle 0-41:Messwerttabelle zum Vergleich Graphitanoden; 2B (1)105Tabelle 0-42:Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L106Tabelle 0-43:Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L106Tabelle 0-44:Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L106Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L107Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,002 mol/L108Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Kunzentration 0,001 mol/L108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-56:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-60:Messwerttabelle zur Haltbarkeit 2H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit 2H (1)114Tabe	Tabelle 0-40:	Messwerttabelle zum Vergleich Graphitanoden; B (2)	104
Tabelle 0-42:Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L.105Tabelle 0-43:Messwerttabelle zur Abhängigkeit von der Konzentration 0,05 mol/L.106Tabelle 0-44:Messwerttabelle zur Abhängigkeit von der Konzentration 0,01 mol/L.107Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L.107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L.107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0005 mol/L.107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)109Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Haltbarkeit 21 (2).Tabelle 0-58:Messwerttabelle zur Haltbarkeit 21 (2).Tabelle 0-59:Messwerttabelle zur Haltbarkeit 13Tabelle 0-61:Messwerttabelle zur Haltbarkeit 41 (2).Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3).Tabelle 0-63:Messwerttabelle zur Haltbarkeit B (4).Tabelle 0-64: </td <td>Tabelle 0-41:</td> <td>Messwerttabelle zum Vergleich Graphitanoden; 2B (1)</td> <td>105</td>	Tabelle 0-41:	Messwerttabelle zum Vergleich Graphitanoden; 2B (1)	105
Tabelle 0-43:Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L106Tabelle 0-44:Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L106Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit 2H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit 1H (2)113Tabelle 0-63:Messwerttabelle zur Haltbarkeit 2H (3)114Tabelle	Tabelle 0-42:	Messwerttabelle zum Vergleich Graphitanoden; 2B (2)	105
Tabelle 0-44:Messwerttabelle zur Abhängigkeit von der Konzentration 0,05 mol/L106Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,01 mol/L107Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2)109Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 136113Tabelle 0-50:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-64:Messwerttabelle zur Hal	Tabelle 0-43:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L	106
Tabelle 0-45:Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L.106Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L.107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L.107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.107Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Kührfischgeschwindigkeit 136 (1).109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2).109Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1).110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1).111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2).111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2).111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (2).112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2).112Tabelle 0-59:Messwerttabelle zur Haltbarkeit H (3).114Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (4).114Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3).114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (3).115Tabelle 0-65: <td>Tabelle 0-44:</td> <td>Messwerttabelle zur Abhängigkeit von der Konzentration 0,05 mol/L</td> <td>106</td>	Tabelle 0-44:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,05 mol/L	106
Tabelle 0-46:Messwerttabelle zur Abhängigkeit von der Konzentration 0,01 mol/L107Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-65:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (3)<	Tabelle 0-45:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L	106
Tabelle 0-47:Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L107Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L107Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2)109Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-65:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabe	Tabelle 0-46:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,01 mol/L	107
Tabelle 0-48:Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L.107Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L.108Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1).109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1).110Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1).110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2).110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2).111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2).111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1).112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2).112Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2).113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3).114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3).114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5).115Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (2).116Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (2).116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2).116Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (2).116Tabelle 0-69: </td <td>Tabelle 0-47:</td> <td>Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L</td> <td>107</td>	Tabelle 0-47:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L	107
Tabelle 0-49:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L107Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Haltbarkeit 2H (1)	Tabelle 0-48:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L	107
Tabelle 0-50:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L108Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Kührfischgeschwindigkeit 136 (1)109Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)113Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit B (1)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-70:Messwerttabelle zur Haltbarkeit B	Tabelle 0-49:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L	107
Tabelle 0-51:Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L	Tabelle 0-50:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L	108
Tabelle 0-52:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit136 (1)109Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit136 (2)109Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit261 (2)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit411 (1)111Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit411 (2)111Tabelle 0-57:Messwerttabelle zur Haltbarkeit 2H (1)	Tabelle 0-51:	Messwerttabelle zur Abhängigkeit von der Konzentration 0,001 mol/L	108
Tabelle 0-53:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit136 (2)109Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)	Tabelle 0-52:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)	109
Tabelle 0-54:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)110Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)113Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)	Tabelle 0-53:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2)	109
Tabelle 0-55:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)110Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)117Tabelle 0-74:Messwerttabelle zur Haltbarkeit 2B (3)117Tabelle 0-75:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-74:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-75:Messwerttabelle zur Hal	Tabelle 0-54:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)	110
Tabelle 0-56:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)111Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)113Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (2)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (4)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)	Tabelle 0-55:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)	110
Tabelle 0-57:Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)111Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)	Tabelle 0-56:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)	111
Tabelle 0-58:Messwerttabelle zur Haltbarkeit 2H (1)112Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit B (2)118Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-57:	Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)	111
Tabelle 0-59:Messwerttabelle zur Haltbarkeit 2H (2)112Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit HB (1)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-58:	Messwerttabelle zur Haltbarkeit 2H (1)	112
Tabelle 0-60:Messwerttabelle zur Haltbarkeit H (1)113Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit HB (1)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)118Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-59:	Messwerttabelle zur Haltbarkeit 2H (2)	112
Tabelle 0-61:Messwerttabelle zur Haltbarkeit H (2)113Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit H (1)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit B (2)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-60:	Messwerttabelle zur Haltbarkeit H (1)	113
Tabelle 0-62:Messwerttabelle zur Haltbarkeit H (3)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit HB (1)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-70:Messwerttabelle zur Haltbarkeit ZB (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-61:	Messwerttabelle zur Haltbarkeit H (2)	113
Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (4)114Tabelle 0-63:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-64:Messwerttabelle zur Haltbarkeit HB (1)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121rabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-62:	Messwerttabelle zur Haltbarkeit H (3)	114
Tabelle 0-64:Messwerttabelle zur Haltbarkeit H (5)115Tabelle 0-65:Messwerttabelle zur Haltbarkeit HB (1)115Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-63:	Messwerttabelle zur Haltbarkeit H (4)	114
Tabelle 0-65:Messwerttabelle zur Haltbarkeit HB (1)	Tabelle 0-64:	Messwerttabelle zur Haltbarkeit H (5)	115
Tabelle 0-66:Messwerttabelle zur Haltbarkeit B (1)116Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-65:	Messwerttabelle zur Haltbarkeit HB (1)	115
Tabelle 0-67:Messwerttabelle zur Haltbarkeit B (2)116Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-66:	Messwerttabelle zur Haltbarkeit B (1)	116
Tabelle 0-68:Messwerttabelle zur Haltbarkeit B (3)117Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-67:	Messwerttabelle zur Haltbarkeit B (2)	116
Tabelle 0-69:Messwerttabelle zur Haltbarkeit B (4)117Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-68:	Messwerttabelle zur Haltbarkeit B (3)	117
Tabelle 0-70:Messwerttabelle zur Haltbarkeit 2B (1)118Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode121	Tabelle 0-69:	Messwerttabelle zur Haltbarkeit B (4)	117
Tabelle 0-71:Messwerttabelle zur Haltbarkeit 2B (2)118Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell120Tabelle 0-76:Zersetzungsspannung an einer Zinkkathode121	Tabelle 0-70:	Messwerttabelle zur Haltbarkeit 2B (1)	118
Tabelle 0-72:Messwerttabelle zur Haltbarkeit 2B (3)119Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode120Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode120und einer Graphitanode (Tabelle 0-73)120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentellermittelten Werte bei einer Zinkkathode und Graphitanode121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	Tabelle 0-71:	Messwerttabelle zur Haltbarkeit 2B (2)	118
Tabelle 0-73:Zersetzungsspannung an einer Zinkkathode und einer Graphitanode	Tabelle 0-72:	Messwerttabelle zur Haltbarkeit 2B (3)	119
Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathodeund einer Graphitanode (Tabelle 0-73)120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentellermittelten Werte bei einer Zinkkathode und Graphitanode121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	Tabelle 0-73:	Zersetzungsspannung an einer Zinkkathode und einer Graphitanode	120
und einer Graphitanode (Tabelle 0-73)120Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentellermittelten Werte bei einer Zinkkathode und Graphitanode121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	Tabelle 0-74:	Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathe	ode
Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentellermittelten Werte bei einer Zinkkathode und Graphitanode121Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	und einer Graphi	tanode (Tabelle 0-73)	120
ermittelten Werte bei einer Zinkkathode und Graphitanode	Tabelle 0-75:	Differenz der rechnerisch ermittelten Geradenparameter und experimentell	
Tabelle 0-76:Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	ermittelten Werte	e bei einer Zinkkathode und Graphitanode	121
	Tabelle 0-76:	Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	121

Tabelle 0-77:	Mittelwert und Standardabweichung der Zersetzungsspannung an einer	
Magnesiumkatho	ode und einer Graphitanode (Tabelle 0-76)	121
Tabelle 0-78:	Differenz der rechnerich ermittelten Geradenparameter und experimentell ermit	telten
Werte bei einer I	Magnesiumkathode und Graphitanode	122
Tabelle 0-79:	Zersetzungsspannung an einer Aluminiumkathode und einer Graphitanode	123
Tabelle 0-80:	Mittelwert und Standardabweichung der Zersetzungsspannung an einer	
Aluminiumkatho	ode und einer Graphitanode (Tabelle 0-79)	123
Tabelle 0-81:	Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode	124
Tabelle 0-82:	Abweichungen der berechneten Werte von den ermittelten Werten in Abhängigt	keit
der Eintauchtiefe	e der Magnesiumkathode	125
Tabelle 0-83:	Zersetzungsspannung an einer Zinkkathode und einer Graphitanode	126
Tabelle 0-84:	Ermittelte Leitwerte und y-Achsenabschnitte in Abhängigkeit der Eintauchtiefe	der
Zinkkathode mit	einer Graphitanode	126
Tabelle 0-85:	Zersetzungsspannung an einer Aluminiumkathode und einer Graphitanode	127
Tabelle 0-86:	Abhängigkeit des Leitwerts von der Messung bei einer Aluminiumkathode und	l
Graphitanode		128
Tabelle 0-87:	Abweichung der Geradenparameter voneinander bei einer 2H Graphitanode	129
Tabelle 0-88:	Abweichung der Geradenparameter voneinander bei einer H Graphitanode	129
Tabelle 0-89:	Abweichung der Geradenparameter voneinander bei einer HB Graphitanode	129
Tabelle 0-90:	Abweichung der Geradenparameter voneinander bei einer B Graphitanode	130
Tabelle 0-91:	Abweichung der Geradenparameter voneinander bei einer 2B Graphitanode	130
Tabelle 0-92:	Standardabweichungen der verschiedenen Härtegrade aller Messgeraden (Tabel	le
0-87 bis Tabelle	0-91)	130
Tabelle 0-93:	prozentuale Standardabweichungen der verschiedenen Härtegrade aller Messun	gen
		130
Tabelle 0-94:	Standardabweichungen der verschiedenen Härtegrade	131
Tabelle 0-95:	prozentuale Standardabweichungen der verschiedenen Härtegrade	131

Messwerttabellen

Messwerttabellen zu Kapitel 4.2.1

Messwerttabellen zu Kapitel 4.2.1.1

Magnesiumkathode

Tabelle 0-1: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (1 cm)

Anode:	Graphit	1 cm
Kathode:	Magnesium	1 cm
U	Ι	t
in V	in mA	in s
11,486	95	660
11,889	100	690
12,315	105	720
12,668	110	750
13,129	116	780
13,476	121	810
13,891	126	840
14,232	131	870
14,629	136	900
15,013	141	930
15,282	145	960
15,653	150	990
16,041	155	1020
16,341	159	1050
16,665	163	1110

Tabelle 0-2:	Messwerttabelle zur
Abhängigkeit von	der Anodeneintauchtiefe
	(2 cm)

Anode:	Graphit	2 cm
Kathode:	Magnesium	1 cm
U	Ι	t
in V	in mA	in s
10,183	113	840
10,563	120	870
10,831	126	900
11,073	130	930
11,411	136	960
11,623	140	990
11,984	147	1020
12,42	156	1050
12,748	161	1080
13,201	170	1110
13,532	176	1140
13,781	181	1170
14,028	186	1200
14,269	191	1230
14,508	195	1260
14,865	201	1290
15,354	211	1320
15,622	214	1350
15,874	220	1380
15,953	221	1410
16,304	229	1440

Anhang

Anode:	Graphit	3 cm
Kathode:	Magnesium	1 cm
U	Ι	t
in V	in mA	in s
9,73	122	1080
9,912	127	1095
10,219	134	1125
10,476	140	1140
10,735	146	1155
10,911	150	1170
11,165	156	1185
11,392	161	1200
11,595	165	1215
11,827	170	1230
12,198	179	1245
12,619	189	1260
12,923	195	1275
13,197	202	1290
13,483	208	1305
13,782	213	1320
14,191	223	1335
14,652	233	1350
14,951	240	1365
15,429	251	1380
15,678	258	1395
15,977	265	1410

Tabelle 0-3: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)

Aluminiumkathode

Tabelle 0-4: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (1 cm)

Anode:	Graphit	1 cm
Kathode:	Aluminium	1 cm
U	Ι	t
in V	in mA	in s
10,518	112	600
10,706	115	615
10,929	120	630
11,295	125	645
11,567	129	660
11,998	135	675
12,295	141	690
12,725	147	705
13,109	154	720
13,419	160	735
13,776	166	750
14,185	174	765
14,611	181	780
15,026	188	795
15,301	192	810
15,444	197	825
15,61	200	840
16,176	208	855

Tabelle 0-5:Messwerttabelle zurAbhängigkeit von der Anodeneintauchtiefe
(1 cm)

Anode:	Graphit	1 cm	
Kathode:	Aluminium	1 cm	
U	Ι	t	
in V	in mA	in s	
10,658	110	1200	
11,321	121	1215	
11,895	131	1230	
12,449	140	1245	
13,482	154	1260	
13,963	163	1275	
14,698	175	1290	
15,367	185	1305	
15,759	194	1320	
16,526	204	1335	

Tabelle 0-6:	Messwerttabelle zur
Abhängigkeit von	der Anodeneintauchtiefe (2
	cm)

Anode:	Graphit	2 cm
Kathode:	Aluminium	1 cm
U	Ι	t
in V	in mA	in s
9,126	136	900
9,324	140	930
9,501	144	960
9,696	148	990
9,956	155	1020
10,209	160	1035
10,425	164	1050
10,676	170	1065
10,884	174	1080
11,341	186	1095
11,631	191	1110
11,902	198	1125
12,181	203	1140
12,468	209	1155
12,624	212	1170
13,129	224	1185
13,45	230	1200
13,701	236	1215
14,081	244	1230
14,281	248	1245
14,684	258	1260
14,888	262	1275
15,132	268	1290
15,356	273	1305
15,523	278	1320
15,846	286	1335
16,1	291	1350

Anode:	Graphit	2 cm
Kathode:	Aluminium	1 cm
U	Ι	t
in V	in mA	in s
9,17	136	1500
9,434	141	1515
9,627	147	1530
9,898	153	1545
10,128	158	1560
10,355	162	1575
10,749	170	1590
11,029	176	1605
11,325	183	1620
11,603	190	1635
12,033	198	1650
12,398	206	1665
12,688	212	1680
13,027	221	1695
13,459	231	1710
13,844	239	1725
14,45	253	1740
14,679	258	1755
14,831	262	1770
15,127	269	1785
15,349	274	1800
15,836	287	1815
16,158	293	1830

Tabelle 0-7:	Messwerttabelle zur
Abhängigkeit von	der Anodeneintauchtiefe (2
	cm)

Anode:	Graphit	3 cm
Kathode:	Aluminium	1 cm
U	Ι	t
in V	in mA	in s
9,338	130	600
9,579	135	615
9,872	141	620
10,096	146	645
10,315	150	660
10,522	155	675
10,836	161	680
11,107	168	705
11,357	172	720
11,592	178	735
11,758	182	740
11,983	188	765
12,217	191	780
12,402	196	795
12,648	201	800
12,938	208	825
13,174	212	840
13,41	217	855
13,566	222	860
13,745	225	885
14,012	232	900
14,347	239	915
14,604	245	920
14,748	249	945
15,067	257	960
15,438	266	990
15,688	272	1005
15,998	279	1020

Tabelle 0-8: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)

Anode:	Graphit	3 cm
Kathode:	Aluminium	1 cm
U	Ι	t
in V	in mA	in s
9,203	132	1200
9,608	141	1215
10,066	152	1230
10,467	160	1245
10,964	172	1260
11,464	184	1275
11,769	191	1290
12,258	201	1305
12,796	213	1320
13,373	226	1335
13,645	231	1350
14,19	243	1365
14,558	252	1380
15,167	265	1395
15,493	273	1410
15,919	282	1425

Tabelle 0-9:	Messwerttabelle zur
Abhängigkeit von	der Anodeneintauchtiefe (3
	cm)

Zinkkathode

Tabelle 0-10:Messwerttabelle zur Ab-hängigkeit von der Anodeneintauchtiefe (1 cm)

Anode:	Graphit	1 cm
Kathode:	Zink	1 cm
U	Ι	t
in V	in mA	in s
11,277	100	600
11,682	105	615
12,001	109	630
12,489	115	645
12,838	120	660
13,259	126	675
13,578	130	690
13,937	135	705
14,307	140	720
14,653	145	735
15,036	151	750
15,451	156	765
15,753	160	780
16,138	166	795
16,666	172	810

Anode:	Graphit	2 cm
Kathode:	Zink	1 cm
U	Ι	t
in V	in mA	in s
9,45	128	600
9,844	136	630
10,022	141	600
10,239	146	630
10,436	150	660
10,677	156	675
10,818	159	690
11,121	165	705
11,428	172	720
11,738	178	735
12,031	188	750
12,306	192	765
12,627	199	780
12,834	204	795
13,098	209	810
13,329	214	825
13,298	214	840
13,603	222	855
13,942	230	870
14,252	237	885
14,456	242	900
14,629	246	915
14,834	251	930
14,997	255	945
15,265	261	960
15,47	266	975
15,678	272	990
15,965	280	1005

Tabelle 0-11: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (2 cm)

Anode:	Graphit	3 cm
Kathode:	Zink	1 cm
U	Ι	t
in V	in mA	in s
8,807	137	600
8,978	141	615
9,04	144	620
9,318	151	645
9,566	158	675
9,713	162	680
9,839	165	705
10,004	169	720
10,204	175	735
10,417	182	740
10,632	188	765
10,815	192	780
11,04	197	795
11,243	203	800
11,482	210	825
11,755	217	840
11,928	221	855
12,082	226	860
12,226	230	885
12,508	236	900
12,659	240	915
12,839	246	920
13,126	254	945
13,314	259	960
13,474	264	975
13,774	272	990
14,097	282	1005
14,233	287	1020
14,319	289	1035
14,47	293	1040
14,613	298	1065
14,801	305	1080
15,078	311	1095
15,36	317	1110
15.612	326	1125

Tabelle 0-12: Messwerttabelle zur Abhängigkeit von der Anodeneintauchtiefe (3 cm)

Messwerttabellen zu 4.2.1.2

Aluminiumkathode

Tabelle 0-13: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)

Eintauchtiefe		
Graphitanode: 1,5 cm		
Aluminiumkat	thode: 2 cm	
U	I	
in V	in mA	
9,081	130	
9,327	135	
9,581	140	
9,798	145	
9,979	148	
10,235	155	
10,625	165	
10,959	172	
11,451	182	
11,91	194	
12,339	203	
12,789	216	
13,401	230	
14,418	255	
14,623	258	
14,789	266	
14,95	270	
15,12	273	
15,279	276	
15,415	280	
15,561	282	

Tabelle 0-14: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)

Eintauchtiefe	
Graphitanode: 1,5 cm	
Aluminiumkat	thode: 2 cm
U	I
in V	in mA
8,812	135
8,981	139
9,172	144
9,489	151
9,667	157
9,961	163
10,25	169
10,438	173
10,661	177
10,927	185
11,209	193
11,587	201
11,791	205
12,031	212
12,303	220
12,567	227
12,791	232
13,018	238
13,305	244
13,701	252
14,241	268
14,471	272
14,832	276
15,198	283
15,454	292

Tabelle 0-15:	Messwerttabelle zur
Abhängigkeit von	der Kathodeneintauchtiefe
	(2 cm)

Eintauchtiefe		
Graphitanode: 1,5 cm		
Aluminiumkathode: 2 cm		
U	I	
in V	in mA	
9,562	125	
9,74	130	
9,921	135	
10,15	140	
10,429	146	
10,61	150	
10,828	155	
11,078	161	
11,3	166	
11,547	171	
11,892	178	
12,121	185	
12,361	191	
12,616	197	
12,888	203	
13,248	211	
13,607	220	
13,838	226	
14,164	234	
14,636	245	
14,917	252	
15,254	262	
15,709	271	

Tabelle 0-16: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)

Eintauchtiefe	
Graphitanode	e: 1,5 cm
Aluminiumkat	hode: 2 cm
U	I
in V	in mA
9,432	128
9,617	133
9,942	140
10,436	150
10,913	160
11,347	170
12,219	190
12,629	200
13,111	210
13,461	220
13,964	230
14,603	246
14,769	250
15,15	260
15,589	270

Tabelle 0-17:	Messwerttabelle zur
Abhängigkeit von	der Kathodeneintauchtiefe
	(2,5 cm)

Eintauchtiefe	
Graphitanode: 1,5 cm	
Aluminiumkathode: 2,5 cm	
U	I
in V	in mA
8,351	145
8,501	149
8,662	155
8,839	160
8,958	164
9,115	170
9,262	174
9,508	182
9,758	190
9,96	197
10,219	204
10,443	210
10,62	216
10,881	224
11,331	238
11,689	248
11,891	253
12,14	259
12,438	265
12,882	276
13,26	287

Tabelle 0-18: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)

Eintauchtiefe	
Graphitanode	e: 1,5 cm
Aluminiumkat	thode: 3 cm
U	I
in V	in mA
9,21	129
9,351	137
9,362	141
9,441	145
9,573	150
9,75	154
10,001	160
10,211	166
10,489	172
10,691	176
10,895	185
11,27	193
11,503	199
11,875	204
12,115	215
12,41	225
13,221	245
14,15	271
14,351	277
14,778	287
15,062	299
15,31	302

Tabelle 0-19:	Messwerttabelle zur
Abhängigkeit von de	r Kathodeneintauchtiefe
(3	s cm)

Eintauchtiefe	
Graphitanode	e: 1,5 cm
Aluminiumkathode: 3 cm	
U	I
in V	in mA
8,531	141
8,643	146
8,798	151
8,953	154
9,252	163
9,528	171
9,702	176
9,892	182
10,115	188
10,341	194
10,565	201
10,857	207
11,128	215
11,278	220
11,426	225
11,641	232
11,987	241
12,366	254
12,646	265
12,831	270
13,196	285
13,605	297
13,912	308
14,135	314
15,216	353

Zinkkathode

Tabelle 0-20:	Messwerttabelle zur
Abhängigkeit von	der Kathodeneintauchtiefe
	(1,5 cm)

Eintauchtiefe	
Graphitanode	: 1,5 cm
Zinkkathode:	1,5 cm
U	I
in V	in mA
9,219	128
9,041	133
9,126	138
9,219	144
9,331	148
9,381	152
9,593	158
9,771	162
10,006	168
10,216	174
10,407	180
10,588	184
10,791	190
11,059	195
11,203	200
11,481	207
11,835	215
12,201	227
12,647	235
12,889	243
13,559	254
14,113	277
14,396	281
14,726	291
15,071	300
15,329	309

Tabe	elle 0-21:	Messwerttabelle zur
Abhängi	gkeit von d	ler Kathodeneintauchtiefe
	-	(2 cm)

Eintauchtiefe	
Graphitanode	: 1,5 cm
Zinkkathode	e: 2 cm
U	I
in V	in mA
9,279	128
9,364	133
9,557	138
9,689	141
9,796	145
9,999	147
10,145	156
10,446	161
10,71	167
10,92	173
11,172	183
11,502	192
11,887	200
12,287	210
12,981	225
13,71	245
14,284	263
14,471	270
14,705	275
15,011	284
15,42	294

Tabelle 0-22: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (2 cm)

Eintauchtiefe	
Graphitanode	: 1,5 cm
Zinkkathode	e: 2 cm
U	I
in V	in mA
9,021	132
9,291	138
9,324	142
9,532	147
9,682	151
9,895	156
10,079	162
10,313	168
10,512	174
10,69	179
11,009	188
11,298	198
11,561	202
11,563	211
12,276	223
12,541	228
12,561	235
13,268	246
13,621	258
14,125	269
14,321	274
14,716	288
15,088	293
15.372	300

Tabelle 0-23:	Messwerttabelle zur
Abhängigkeit von de	er Kathodeneintauchtiefe
(3 cm)

Eintauchtiefe		
Graphitanode	: 1,5 cm	
Zinkkathode	: 3 cm	
U	Ι	
in V	in mA	
9,625	123	
9,791	129	
9,893	132	
10,032	136	
10,204	140	
10,398	145	
10,617	151	
10,782	155	
11,002	159	
11,198	165	
11,451	168	
11,732	174	
12,003	179	
12,287	189	
12,481	195	
12,783	205	
13,302	217	
13,877	232	
14,555	255	

Tabelle 0-24: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (3 cm)

Eintauchtiefe	
Graphitanode	: 1,5 cm
Zinkkathode	: 3 cm
U	I
in V	in mA
8,989	133
9,125	139
9,31	144
9,445	149
9,679	154
9,956	161
10,251	168
10,484	174
10,601	179
10,863	187
11,102	191
11,351	198
11,849	210
12,352	218
12,891	235
13,451	252
14,15	268
15,351	304

Magnesiumkathode

Tabelle 0-25: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (1 cm)

Eintauchtiefe		
Graphitanode:	1,5 cm	
Magnesiumkat	hode: 1 cm	
U	I	
in V	in mA	
14,531	207	
9,989	117	
10,159	121	
10,385	125	
10,570	129	
10,792	135	
10,981	138	
11,281	143	
11,609	151	
11,910	158	
12,189	162	
12,415	168	
13,101	181	
13,501	190	
13,871	197	
14,851	216	

Tabelle 0-26: Messwerttabelle zur Abhängigkeit von der Kathodeneintauchtiefe (1,5 cm)

Eintauch	ntiefe
Graphitanode:	1,5 cm
Magnesiumkat	node: 1,5 cm
U	Ι
in V	in mA
9,56	123
9,83	127
10,01	132
10,28	136
10,46	140
10,72	146
10,99	153
11,35	160
11,61	166
11,95	174
12,20	181
12,65	189
13,10	202
14,12	219

Tabelle 0-27:	Messwerttabelle zur
Abhängigkeit von d	ler Kathodeneintauchtiefe
	(2 cm)

Eintauchtiefe	
Graphitanode:	1,5 cm
Magnesiumkathode: 2 cm	
U	I
in V	in mA
9,158	128
9,340	132
9,391	135
9,507	137
9,651	141
9,820	145
9,918	147
10,089	151
10,220	154
10,509	160
10,650	165
10,898	171
11,113	176
11,389	184
11,602	189
11,894	196
12,068	200
12,354	206
12,602	213
13,009	224
13,361	231
14,298	256
15,323	283

Tabelle 0-28:	Messwerttabelle zur
Abhängigkeit von d	ler Kathodeneintauchtiefe
(.	3,3 cm)

Eintauchtiefe		
Graphitanode:	1,5 cm	
Magnesiumkatho	ode: 3,3 cm	
U	I	
in V	in mA	
8,815	134	
9,060	141	
9,181	144	
9,160	148	
9,270	153	
9,389	156	
9,641	164	
9,798	168	
10,000	174	
10,198	181	
10,381	185	
10,618	192	
10,926	200	
11,201	208	
11,657	221	
11,951	228	
12,201	236	
12,502	243	
12,896	254	
13,491	272	
13,978	287	
14,123	292	
14,231	295	
14,416	299	

Messwerttabellen zu Kapitel 4.2.2 2H

Tabelle 0-29:Messwerttabelle zumVergleich Graphitanoden; 2H (1)

Mg: 2 cm		
C: 2 cm	Versuch 1	
U	Ι	t
in V	in mA	in s
10,92	101	600
11,181	105	615
11,5	110	630
11,85	114	645
12,328	122	660
12,526	125	675
12,939	132	690
13,138	134	705
13,623	142	720
13,812	145	735
14,181	150	750
14,476	155	765
14,913	162	780
15,53	171	795
15,765	174	810
16,048	177	825
16,332	183	840

Tabelle 0-30:Messwerttabelle zumVergleich Graphitanoden; 2H (2)

Mg: 2 cm		
C: 2 cm	Versuch 2	
U	Ι	t
in V	in mA	in s
11,046	99	1200
11,889	110	1215
12,999	125	1230
12,359	115	1245
13,611	133	1260
14,189	141	1275
15,241	157	1290
15,844	164	1305
16,465	172	1320

Н

Tabelle 0-31:	Messwerttabelle zum
Vergleich G	raphitanoden; H (1)

Mg: 2 cm		
C: 2 cm	Versuch 1	
U	Ι	t
in V	in mA	in s
9,298	128	600
9,403	131	615
9,569	135	630
9,756	140	645
9,939	145	660
10,103	150	675
10,321	155	690
10,481	159	705
10,689	164	720
10,937	171	735
11,163	176	750
11,25	178	765
11,431	185	780
11,588	189	795
11,84	195	810
12,039	200	825
12,304	206	840
12,548	212	855
12,749	217	870
12,951	223	885
13,187	229	900
13,437	235	915
13,75	249	930
14,327	256	945
14,502	259	960
14,678	265	975
14,895	270	990
15,182	275	1005
15,403	281	1020
15,787	290	1035

Mg: 2 cm		
C: 2 cm	Versuch 2	
U	Ι	t
in V	in mA	in s
10,059	116	1500
10,34	121	1515
10,998	133	1530
11,418	141	1545
11,956	151	1560
12,7607	163	1575
13,257	173	1590
13,859	184	1605
14,442	192	1620
14,987	201	1635
15,687	208	1650
16,292	210	1665

Tabelle 0-32:Messwerttabelle zumVergleich Graphitanoden; H (2)

Tabelle 0-33:Messwerttabelle zumVergleich Graphitanoden; H (4)

Mg: 2 cm		
C: 2 cm	Versuch 4	
U	Ι	t
in V	in mA	in s
10,14	115	1200
10,464	121	1215
11,132	134	1230
11,616	143	1245
12,091	153	1260
12,631	162	1275
13,287	175	1290
13,763	186	1305
14,153	193	1320
14,939	207	1335
15,146	211	1350
15,721	222	1365
16,162	229	1380
16,223	230	1395

Tabelle 0-34:	Messwerttabelle zum
Vergleich G	raphitanoden; H (3)

Mg: 2 cm		
C: 2 cm	Versuch 3	
U	Ι	t
in V	in mA	in s
9,989	118	600
10,138	121	615
10,342	125	630
10,621	131	645
10,757	134	660
11,11	142	675
11,291	145	690
11,553	151	705
11,73	154	720
12,019	161	735
12,279	166	750
12,423	170	765
12,7	175	780
13,006	183	795
13,264	188	810
13,495	193	825
13,709	197	840
13,897	201	855
14,057	203	870
14,242	208	885
14,515	213	900
14,781	219	915
14,931	223	930
15,063	225	945
15,238	229	960
15,433	233	975
15,601	237	990
15,816	241	1005
16,111	246	1020

HB

Tabelle 0-35:Messwerttabelle zumVergleich Graphitanoden; HB (1)

Mg: 2 cm		
C: 2 cm	Versuch 1	
U	Ι	t
in V	in mA	in s
9,21	132	600
9,336	136	615
9,518	140	630
9,653	144	645
9,872	150	660
10,053	155	675
10,306	161	690
10,462	164	705
10,689	168	720
10,855	173	735
10,974	176	750
11,191	182	765
11,409	188	780
11,684	195	795
11,957	202	810
12,124	207	825
12,382	212	840
12,52	216	855
12,703	222	870
12,843	226	885
13,009	232	900
13,246	238	915
13,369	242	930
13,516	247	945
13,654	252	960
13,932	259	975
14,117	266	990
14,331	271	1005
14,47	277	1020
14,591	280	1035
14,715	285	1050
14,998	294	1065
15,389	306	1080
15,734	314	1110

Tabelle 0-36:Messwerttabelle zumVergleich Graphitanoden; HB (2)

Mg: 2 cm		
C: 2 cm	Versuch 2	
U	Ι	t
in V	in mA	in s
9,161	132	1500
9,559	143	1515
9,906	153	1530
10,297	161	1545
10,653	171	1560
11,161	183	1575
11,569	194	1590
11,943	204	1605
12,281	213	1620
12,721	225	1635
13,161	237	1650
13,445	244	1665
13,753	253	1680
14,104	262	1695
14,444	273	1710
14,777	283	1725
15,036	292	1740
15,432	307	1770
15,731	314	1800

Mg: 2 cm		
C: 2 cm	Versuch 3	
U	Ι	t
in V	in mA	In s
9,502	123	600
9,759	129	615
9,999	134	630
10,266	140	645
10,423	145	660
10,688	151	675
10,931	157	690
11,091	159	705
11,364	166	720
11,584	172	735
11,8	175	750
11,961	181	765
12,141	186	780
12,369	189	795
12,534	194	810
12,835	200	825
13,111	206	840
13,352	212	855
13,551	216	870
13,708	220	885
13,869	225	900
14,085	229	915
14,341	236	930
14,527	239	945
14,697	244	960
14,951	250	975
15,153	256	990
15,361	262	1005
15,51	265	1020
15,901	270	1035

Tabelle 0-37:Messwerttabelle zumVergleich Graphitanoden; H (3)

Tabelle 0-38:Messwerttabelle zumVergleich Graphitanoden; HB (4)

Mg: 2 cm		
C: 2 cm	Versuch 4	
U	Ι	t
in V	in mA	in s
9,531	124	1200
9,865	131	1215
10,351	142	1230
10,911	154	1245
11,176	161	1260
11,705	172	1275
12,17	183	1290
12,731	196	1305
13,234	207	1320
13,583	214	1335
14	225	1350
14,524	234	1365
14,777	241	1380
15,2	252	1395
15,657	261	1410
15,8	267	1425

В

Tabelle 0-39:Messwerttabelle zumVergleich Graphitanoden; B (1)

Mg: 2 cm		
C: 2 cm	Versuch 1	
U	Ι	t
in V	in mA	in s
10,025	118	600
10,28	124	615
10,541	128	630
10,781	135	645
10,991	139	660
11,261	145	675
11,543	150	690
11,835	158	705
12,068	162	720
12,266	166	735
12,382	168	750
12,498	171	765
12,667	175	780
12,929	182	795
13,237	189	810
13,47	195	825
13,759	200	840
14,079	207	870
14,389	214	840
14,541	217	885
14,834	223	900
14,959	228	915
15,174	232	930
15,518	239	945
15,751	245	960
16,101	253	975

Tabelle 0-40:Messwerttabelle zumVergleich Graphitanoden; B (2)

Mg: 2 cm		
C: 2 cm	Versuch 2	
U	Ι	t
in V	in mA	in s
9,957	120	1200
10,543	132	1215
10,933	141	1230
11,411	151	1245
11,958	163	1260
12,446	172	1275
12,916	184	1290
13,472	196	1305
13,72	201	1320
14,254	212	1335
14,689	222	1350
15,096	231	1365
15,718	242	1380
16,103	253	1395
15,64	244	1410

2B

Tabelle 0-41:Messwerttabelle zumVergleich Graphitanoden; 2B (1)

Mg: 2 cm		
C: 2 cm	Versuch 1	
U	Ι	t
in V	in mA	in s
9,364	128	600
9,511	132	615
9,645	136	630
9,891	142	645
10,085	148	660
10,232	151	675
10,383	154	690
10,579	160	705
10,736	164	720
10,948	169	735
11,135	174	750
11,415	183	765
11,554	187	780
11,839	193	795
12,081	200	810
12,231	204	825
12,451	210	840
12,702	217	870
12,938	224	840
13,348	235	900
13,542	240	915
13,753	246	930
13,958	253	945
14,097	255	960
14,258	261	975
14,483	266	990
14,631	271	1005
14,784	276	1020
14,967	281	1035
15,13	287	1050
15,281	291	1065
15,432	295	1080
15,686	301	1095

Mg: 2 cm		
C: 2 cm	Versuch 2	
U	Ι	t
in V	in mA	in s
9,238	130	1200
9,705	141	1215
10,142	153	1230
10,498	163	1245
10,818	171	1260
11,217	182	1275
11,589	192	1290
11,917	200	1305
12,541	216	1320
12,807	224	1335
13,137	233	1350
13,497	242	1365
13,872	252	1380
14,318	265	1395
14,562	270	1410
15,025	284	1425
15,535	291	1440
15.692	302	1455

Tabelle 0-42: Messwerttabelle zum Vergleich Graphitanoden; 2B (2)

Messwerttabellen zu Kapitel 4.2.3

Tabelle 0-43: Messwerttabelle zur Abhängigkeit von der Konzentration 0,075 mol/L

c(NaCl)=	0,075	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
10,266	113	600
10,646	123	615
11,017	131	630
11,529	140	645
12,18	153	660
12,901	167	675
13,289	174	690
13,696	185	705
14,298	197	720
14,876	208	735
15,147	212	750
15,545	223	765
16,195	237	780

Tabelle 0-44: Messwerttabelle zur Abhängigkeit von der Konzentration 0,05 mol/L

c(NaCl)=	0,05	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
11,836	90	600
12,253	96	615
12,601	100	630
12,764	102	645
13,071	107	660
13,377	110	675
13,872	117	690
14,143	121	705
14,489	125	720
14,889	129	735
15,158	132	750
15,615	137	765
15,826	140	780
16,117	144	795
16,475	148	810
16,83	154	825

c(NaCl)=	0,025	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
13,718	60,8	600
14,118	63,5	615
14,369	65,3	630
14,637	67	645
14,806	68,3	660
15,016	69,6	675
15,164	70,7	690
15,216	71,1	705
15,393	72,3	720
15,542	73,2	735
15,765	74,7	750
15,889	75,6	765
16,068	76,8	780
16,165	77,4	795
16,337	78,8	810
16,409	79,3	825
16,566	80,4	840
16,719	81,3	855
16,843	82,3	870
17,042	83,7	885
17,213	84,9	900
17,307	85,6	915
17,337	85,8	930

Tabelle 0-45: Messwerttabelle zur Abhängigkeit von der Konzentration 0,025 mol/L

c(NaCl)=	0,01	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
15,881	30,3	360
16,202	31,1	375
16,388	31,5	390
16,548	31,9	405
16,695	32,3	420
16,835	32,9	435
17,013	33,3	450
17,116	33,5	465
17,245	33,9	480
17,528	34,7	495
18,039	36	510
18,084	36,2	525

Tabelle 0-46: Messwerttabelle zur Abhängigkeit von der Konzentration 0,01 mol/L

Tabelle 0-47: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0075 mol/L

c(NaCl)=	0,0075	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
15,921	29,2	780
16,183	29,8	795
16,597	30,9	810
16,839	31,5	825
17,085	32,1	840
17,361	33,1	955
17,793	34,3	870
18,018	34,9	885
18,127	35,2	900

Tabelle 0-48: Messwerttabelle zur Abhängigkeit von der Konzentration 0,005 mol/L

c(NaCl)=	0,005	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
16,753	16,3	600
17,252	17,1	615
17,558	17,6	630
18,062	18,3	645
18,698	19,2	660
19,234	19,8	675
19,633	20,3	690
18,308	18,9	705

Tabelle 0-49: Messwerttabelle zur Abhängigkeit von der Konzentration 0,0025 mol/L

c(NaCl)=	0,0025	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
17,16	11,5	660
17,66	12	675
19,14	13,3	690
20,12	14,2	705
20,51	14,5	720
20,78	14,8	735
20,94	15	750
21,26	15,3	765
17,43	11,9	780
18,32	12,6	795

c(NaCl)=	0,001	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
17,764	4,43	300
17,956	4,47	330
18,883	4,83	360
19,925	5,14	390
20,51	5,32	420
20,88	5,44	450
21,61	5,69	480
22,1	5,87	510
22,36	5,99	540
22,86	6,15	570
23,24	6,28	600
23,61	6,41	630
23,91	6,54	660

Tabelle 0-50:	Messwerttabelle zur
Abhängigkeit v	on der Konzentration
0,001 mol/L	

Tabelle 0-51:	Messwerttabelle zur
Abhängigkeit v	on der Konzentration
0,0	01 mol/L

c(NaCl)=	0,001	mol/L
Kathode:	Mg	2 cm
Anode:	HB-C	1,5 cm
U	Ι	t
in V	in mA	in s
17,66	4,5	660
17,9	4,6	675
18,38	4,77	690
19,12	5,02	705
20,6	5,49	720
21,29	5,73	735
22,11	5,99	750
22,47	6,12	765
23,11	6,35	780
23,73	6,58	795

Messwerttabellen zu Kapitel 4.2.4

Tabelle 0-52: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (1)

c(NaCl)=	0,1		
Rührfischges	chwindigkeit	136	pro min
Graphita	node (2B)		1,5 cm
Magnesiu	mkathode		2 cm
U	I		t
in V	in mA		in s
9,541	125		600
9,746	130,9		615
9,961	134,4		630
10,201	139,7		645
10,361	142,9		660
10,618	148,9		675
10,834	153,9		690
10,979	156,9		705
11,063	159,1		720
11,274	163		735
11,461	168,2		750
11,591	171,2		765
11,863	177,1		780
11,967	179,5		795
12,082	182,3		810
12,212	184,8		825
12,37	189		840
12,581	193,5		855
12,718	197,5		870
13,061	203		885
13,199	207		900
13,415	213		915
13,623	217		930
13,891	226		945
14,231	233		960
14,598	243		975
14,725	247		990
14,884	251		1005
15,139	255		1020
15,459	264		1035
15,653	267		1050
15,934	273		1065

Tabelle 0-53: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 136 (2)

c(NaCl)=	0,1		
Rührfischges	chwindigkeit	136	pro min
Graphita	node (2B)		1,5 cm
Magnesiu	mkathode		2 cm
U	I		t
in V	in mA		in s
9,865	120		1320
10,531	135		1335
11,042	145		1350
11,278	151		1365
12,052	167		1380
12,37	174		1395
12,722	183		1410
13,283	194		1425
13,597	202		1440
14,275	214		1455
14,752	225		1470
15,168	232		1485
15,58	240		1500
16,035	250		1515

Tabelle 0-54: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (1)

c(NaCl)=	0,1		
Rührfischges	chwindigkeit	261	pro min
Graphita	node (2B)		1,5 cm
Magnesiu	mkathode		2 cm
U	I		t
in V	in mA		in s
9,463	125,4		600
9,729	131,2		615
10,011	136,7		630
10,131	141,4		645
10,251	143,9		660
10,521	151,2		675
10,802	157,8		690
10,847	160,1		705
11,043	165,5		720
11,232	170,2		735
11,451	174,4		750
11,682	180,9		765
11,962	188,7		780
12,122	192,2		795
12,194	194,9		810
12,481	204		825
12,663	208		840
12,732	211		855
12,939	215		870
13,139	222		885
13,382	227		900
13,482	231		915
13,633	235		930
13,789	240		945
13,916	245		960
14,145	250		975
14,376	255		990
14,519	260		1005
14,749	266		1020
14,887	270		1035
15,109	275		1050
15,301	282		1065
15,479	286		1080
15,755	293		1095

Tabelle 0-55: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 261 (2)

c(NaCl)=	0,1		
Rührfischge	schwindigkeit	261	pro min
Graphita	node (2B)		1,5 cm
Magnesi	umkathode	-	2 cm
U	I		t
in V	in mA		in s
9,331	128		1320
9,639	135		1335
9,859	141		1350
10,477	156		1365
10,739	163		1380
11,076	172		1395
11,528	184		1410
12,057	197		1425
12,395	206		1440
12,826	215		1455
13,181	226		1470
13,481	232		1485
13,909	243		1500

Tabelle 0-56: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (1)

c(NaCl)=	0,1		
Rührfischges	schwindigkeit	411	pro min
Graphita	node (2B)		1,5 cm
Magnesiu	mkathode		2 cm
U	I		t
in V	in mA		in s
9,650	123		600
9,961	131		615
10,189	135		630
10,378	141		645
10,553	146		660
10,766	151		675
10,998	158		690
11,107	161		705
11,245	164		720
11,548	171		735
11,742	175		750
11,863	182		765
12,010	187		780
12,259	192		795
12,469	198		810
12,587	200		825
12,735	205		840
13,065	210		855
13,204	216		870
13,350	222		885
13,450	224		900
13,685	230		915
13,885	236		930
14,015	240		945
14,232	245		960
14,441	250		975
14,670	256		990
14,863	262		1005
15,000	265		1020
15,221	273		1035
15,402	277		1050
15,515	278		1065
15,791	288		1080

Tabelle 0-57: Messwerttabelle zur Abhängigkeit von der Rührfischgeschwindigkeit 411 (2)

c(NaCl)=	0,1		
Rührfischges	chwindigkeit	411	pro min
Graphita	node (2B)		1,5 cm
Magnesiu	mkathode		2 cm
U	I		t
in V	in mA		in s
9,358	127		1320
9,635	133		1335
9,981	142		1350
10,371	152		1365
10,824	163		1380
11,175	172		1395
11,531	182		1410
12,012	194		1425
12,588	207		1440
13,024	217		1455
13,308	225		1470
13,634	232		1485
14,095	245		1500
14,436	252		1515
14,832	264		1530
15,39	276		1545
15,547	280		1560
15,808	287		1575

Messwerttabellen zu Kapitel 4.2.5

2H

Tabelle 0-58:Messwerttabelle zur
Haltbarkeit 2H (1)

Kathode:	Mg	2cm
Anode:	2H-C	2cm 1
U	Ι	t
in V	in mA	in s
16,294	206	15
16,239	214	120
16,241	217	300
16,231	215	420
16,223	215	600
16,247	214	660
16,266	211	720
16,285	209	780
16,35	208	840
16,331	205	900
16,397	203	960
16,419	199	1020
16,439	196	1080
16,479	193	1140
16,515	189	1200
16,577	176	1260
16,683	163	1320
16,79	147	1380
17,095	121	1440
17,459	75	1500
17,589	65	1560
17,601	68	1620
17,581	68	1680
17,538	67	1740
17,501	70	1800
17,499	71	1860
17,642	64	1920
17,57	65	1980
17,901	49	2040
17,716	52	2100
17,789	57	2160
0	0	2215

Tabelle 0-59: Messwerttabelle zur Haltbarkeit 2H (2)

Kathode:	Mg	2cm	
Anode:	2H-C	2cm	2
U	Ι	t	
in V	in mA	in	s
16,281	207		15
16,25	212		120
16,241	217		300
16,251	219		420
16,291	213		600
16,256	212		660
16,267	212		720
16,29	211		780
16,291	209		840
16,338	206		900
16,373	199		960
16,381	200		1020
16,389	198		1080
16,389	197		1140
16,411	195		1200
16,408	194		1260
16,45	187		1320
16,51	182		1380
16,672	165		1440
16,753	154		1500
16,855	143		1560
17,018	123		1620
17,496	73		1680
17,583	66		1740
17,614	63		1800
17,598	60		1860
17,613	64		1920
17,687	58		1980
17,592	63		2040
17,622	66		2100
17,63	63		2160
17,730	59		2220
17,797	54		2280
17,816	53		2340
17,82	45		2400
17,91	48		2460
17,907	43		2520

Anhan	g	
	1	
17,841	41	2580
17,859	43	2640
17,897	41	2700
17,764	48	2760
17,793	46	2820
17,806	48	2880
18,645	25	2940
18,425	26	3000
18,309	26	3060
18,261	27	3120
18,251	26	3180
18,241	28	3240
18,261	28	3300
0	0	3314

Н

Tabelle 0-60: Messwerttabelle zur Haltbarkeit H (1)

Kathode:	Mg	2cm	
Anode:	H-C	2cm	1
U	Ι	t	
in V	in mA	in s	
16,139	270		15
16,08	275		300
16,157	263		600
16,442	225		900
16,801	176	1	080
16,985	153	1	140
17,197	128	1	170
17,561	85	1	200
17,649	77	1	260
17,653	73	1	320
17,363	75	1	500
17,902	52	1	740
17,938	51	1	800
0	0	1	882

Tabelle 0-61: Messwerttabelle zur Haltbarkeit H (2)

Kathode:	Mg	2cm	
Anode:	H-C	2cm	2
U	Ι	t	
in V	in mA	in	S
16,186	235		15
16,195	238		300
16,221	229		600
16,299	218		720
16,378	211		840
16,391	204		900
16,441	199		960
16,552	188		1020
16,665	168		1080
16,698	165		1140
16,828	148		1200
17,279	94		1320
17,513	73		1380
17,502	72		1440
17,509	74		1500
17,487	76		1560
17,496	74		1620
17,538	70		1680
17,741	52		1740
17,806	51		1800
17,912	44		1860
17,989	39		1920
18,238	31		1980
18,478	27		2040
18,776	23		2100
18,588	25		2160
0	0		2238

Kathode:	Mg	2cm	
Anode:	H-C	2cm	3
U	Ι	t	
in V	in mA	in	s
16,135	228		30
16,18	233		120
16,184	234		240
16,157	235		300
16,181	232		600
16,236	218		900
16,376	199		1200
16,572	176		1380
17,397	86		1500
17,417	78		1560
17,447	79		1620
17,368	81		1680
17,595	70		1860
17,654	65		1980
17,723	62		2040
17,872	50		2100
0	0		2142

Tabelle 0-62: Messwerttabelle zur Haltbarkeit H (3)

Tabelle 0-63: Messwerttabelle zur Haltbarkeit H (4)

Kathode:	Mg	
Anode:	H-C	4
U	Ι	t
in V	in mA	in s
16,217	235	15
16,209	239	120
16,21	243	300
16,247	243	420
16,267	233	600
16,272	227	720
16,309	223	780
16,326	217	840
16,368	211	900
16,405	206	960
16,472	202	1020
16,543	191	1080
16,592	180	1140
16,68	167	1200
16,834	152	1260
17,028	123	1320
17,381	83	1350
17,446	79	1380
17,429	78	1440
17,446	78	1500
17,443	77	1560
17,461	74	1620
17,445	74	1680
17,474	72	1740
17,501	70	1800
0	0	1844

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Tabelle 0-64: Messwerttabelle zur Haltbarkeit H (5)

Kathode:	Mg	
Anode:	H-C	5
	r	[
U	Ι	t
in V	in mA	in s
16,047	243	15
16,015	248	120
16,015	250	300
15,981	251	420
16,049	247	600
16,053	246	660
16,071	243	720
16,089	242	780
16,142	238	840
16,176	234	900
16,2	230	960
16,218	225	1020
16,284	217	1080
16,324	209	1140
16,357	198	1200
16,425	192	1260
16,585	174	1320
16,689	159	1380
16,782	142	1440
17,081	115	1500
17,402	78	1515
17,389	78	1560
17,389	75	1620
17,367	76	1680
17,381	79	1740
17,388	78	1800
17,529	65	1860
17,698	58	1920
17,765	46	1980
17,682	48	2040
17,737	48	2100
17,752	46	2160
17,82	43	2220
17,895	35	2280
18,085	29	2340
18,24	27	2400
18,803	23	2460
0	0	2515

HB

Tabelle 0-65: Messwerttabelle zur Haltbarkeit HB (1)

Kathode:	Mg	2cm
Anode:	HB-C	2cm 1
		1
U	Ι	t
in V	in mA	in s
15,904	287	15
15,738	311	300
15,716	315	600
15,789	318	900
15,732	319	1200
15,759	315	1500
15,803	312	1800
15,896	295	2100
16,012	280	2400
16,121	260	2700
16,446	214	3000
16,648	188	3060
16,905	151	3120
17,441	94	3150
17,541	81	3165
17,564	81	3180
17,804	65	3210
17,702	64	3240
17,711	62	3300
0	0	3495

В

Tabelle 0-66: Messwerttabelle zur Haltbarkeit B (1)

Kathode:	Mg	2cm
Anode:	B-C	2cm 1
U	Ι	t
in V	in mA	in s
16,008	210	15
15,955	215	120
15,946	218	180
15,975	218	240
15,967	218	300
16,203	231	420
16,204	232	600
16,269	227	900
16,372	211	1200
16,564	188	1500
16,708	162	1680
16,786	156	1740
16,939	134	1800
17,062	119	1860
17,384	90	1920
17,477	74	1980
17,531	72	2040
17,541	71	2100
17,817	55	2400
0	0	2496

Tabelle 0-67: Messwerttabelle zur Haltbarkeit B (2)

Kathode:	Mg	2cm	
Anode:	B-C	2cm	2
U	Ι	t	
in V	in mA	in	S
16,362	209		15
16,34	212		60
16,332	218		240
16,343	219		300
16,342	219		480
16,332	221		600
16,346	219		720
16,339	216		840
16,377	214		900
16,414	211		1020
16,433	205		1110
16,459	199		1200
16,552	195		1260
16,576	189		1320
16,643	180		1380
16,6678	169		1440
16,773	162		1500
16,849	151		1560
16,975	134		1620
17,154	117		1680
17,384	90		1740
17,483	82		1800
17,529	74	186	
17,526	75		1920
17,531	76		1980
17,518	77		2040
17,551	76		2100
17,563	74		2160
17,621	73		2220
17,982	43		2280
0	0		2328

Tabelle 0-68: Messwerttabelle zur Haltbarkeit B (3)

Kathode:	Mg	2cm	
Anode:	В	2cm	3
U	Ι	t	
in V	in mA	in	S
16,138	243		15
16,133	251		120
16,098	252		300
16,098	255		420
16,089	259		600
16,068	255		720
16,107	246		900
16,197	241		1020
16,271	226		1200
16,345	213		1320
16,47	197		1440
16,537	187		1500
16,574	177		1560
16,825	147		1620
16,839	143		1680
17,293	101		1740
17,282	98		1745
17,356	87		1800
17,462	83		1860
17,467	82		1920
17,463	82		1980
17,462	85		2040
17,501	74		2100
17,537	71		2160
17,588	74		2220
17,711	63		2280
0	0		2335

Tabelle 0-69: Messwerttabelle zur Haltbarkeit B (4)

Kathode:	Mg	
Anode:	B-C	4
U	Ι	t
in V	in mA	in s
15,827	268	30
15,826	272	120
15,804	281	300
15,789	281	420
15,699	280	600
15,726	277	720
15,739	273	900
15,79	270	1020
15,851	258	1200
15,875	254	1260
15,919	249	1320
15,984	241	1380
16,018	236	1440
16,065	229	1500
16,128	219	1560
16,137	211	1620
16,237	205	1680
16,287	196	1740
16,304	191	1800
16,351	185	1860
16,392	179	1920
16,429	170	1980
16,606	154	2040
16,712	136	2100
16,938	112	2190
17,013	103	2220
17,078	95	2250
17,109	90	2280
17,201	84	2340
17,257	81	2400
17,307	72	2460
17,290	73	2520
17,281	76	2580
17,266	77	2640
17,469	57	2700
17,509	59	2760
17,545	56	2820
17,517	57	2880
17,47	53	2940
0	0	2993

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

2B

Tabelle 0-70: Messwerttabelle zur Haltbarkeit 2B (1)

Kathode:	Mg	2cm	
Anode:	2B	2cm 1	
U	Ι	t	
in V	in mA	in s	
16,209	247	15	
16,186	253	120	
16,171	258	300	
16,175	259	600	
16,173	257	960	
16,113	265	1110	
16,204	257	1200	
16,173	258	1380	
16,174	255	1500	
16,224	252	1620	
16,216	248	1680	
16,241	246	1740	
16,231	242	1800	
16,297	239	1860	
16,319	235	1920	
16,418	223	2040	
16,449	215	2100	
16,538	207	2160	
16,591	203	2220	
16,608	195	2280	
16,637	194	2340	
16,702	184	2400	
16,801	161	2670	
17,584	73	2700	
17,574	69	2760	
17,642	66	2820	
17,676	66	2880	
17,769	62	3000	
17,702	65	3060	
17,801	63	3120	
17,954	51	3180	
18,000	40	3240	
18,036	43	3300	
18,241	33	3360	
18,140	33	3420	
18,130	35	3480	
18,271	32	3540	
18,052	35	3600	

18,133	39	3660
18,039	34	3720
18,156	33	3780
0	0	3811

Tabelle 0-71:Messwerttabelle zur
Haltbarkeit 2B (2)

Kathode:	Mg	2cm
Anode:	2B	2cm 2
U	Ι	t
in V	in mA	in s
16,188	252	15
16,139	260	240
16,167	264	360
16,146	267	660
16,139	266	900
16,177	264	1080
16,215	257	1380
16,251	252	1500
16,270	246	1620
16,314	245	1680
16,364	241	1740
16,372	238	1800
16,406	235	1860
16,459	226	1920
16,498	218	2040
16,560	212	2100
16,568	209	2160
16,593	204	2220
16,594	202	2280
16,665	192	2400
16,696	188	2460
16,789	179	2520
16,871	169	2580
16,938	160	2640
17,053	145	2700
17,165	135	2760
17,613	84	2790
17,602	83	2820
17,676	73	2880
17,833	68	2940
17,724	70	3000
17,706	72	3060
17,730	72	3120
0	0	3154

Anhang

Kathode: Anode:	Mg 2B-C	3
U	Ι	t
in V	in mA	in s
16,025	253	15
15,988	264	120
15,905	270	300
15,886	272	420
15,88	271	600
15,953	273	720
15,951	271	900
15,982	267	1020
16,01	261	1200
16,021	257	1320
16,092	247	1500
16,218	236	1620
16,359	217	1860
16,379	211	1920
16,401	207	1980
16,465	201	2040
16,517	196	2100
16,514	191	2160
16,6	185	2220
16,657	171	2280
16,771	156	2340
16,852	146	2400
16,998	130	2460
17,189	107	2520
17,287	97	2580
17,372	88	2640
17,456	81	2700
17,412	84	2760
17,445	83	2820
17,571	69	2880
17,635	64	2940
17,601	63	3000
17,63	60	3060
17,657	63	3120
17,623	62	3180
17,615	62	3240
17,691	58	3300
0	0	3349

Tabelle 0-72: Messwerttabelle zur Haltbarkeit 2B (3)

Tabellen und Diagramme

Tabellen und Diagramme zu Kapitel 4.2.1

Tabellen und Diagramme zu Kapitel 4.2.1.1

Tabellen und Diagramme zu Kapitel 4.2.1.1 mit der Zinkkathode

Tabelle 0-73: Zersetzungsspannung an einer Zinkkathode und einer Graphitanode

Eintauchtiefe		
Graphit	Zink	Zersetzungsspannung
in cm	in cm	in V
1	1	3,980
2	1	3,947
3	1	3,874

Tabelle 0-74:Mittelwert und Standardabweichung der Zersetzungsspannung an einer Zinkkathode
und einer Graphitanode (Tabelle 0-73)

Mittelwert	3,934
Standardabweichung	0,055

Abbildung 0-1: Abhängigkeit des Leitwerts von der Eintauchtiefe der Graphitanode mit einer Zinkkathode

Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Graphitanode mit einer Zinkkathode

Tabelle 0-75:Differenz der rechnerisch ermittelten Geradenparameter und experimentell ermitteltenWerte bei einer Zinkkathode und Graphitanode

Eintauchtiefe Graphit	Differenz Leitwert	Differenz y-Achsenabschnitt
in cm	in mS	
1	0,815	-3,483
2	-1,631	6,967
3	0,815	-3,483

Tabellen und Diagramme zu Kapitel 4.2.1.1mit der Magnesiumkathode

Tabelle 0-76: Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode

Eintauchtiefe		
Graphit	Magnesium	Zersetzungsspannung
in cm in cm		in V
1	1	4,363
2	1	4,159
3	1	4,273

Tabelle 0-77:Mittelwert und Standardabweichung der Zersetzungsspannung an einer
Magnesiumkathode und einer Graphitanode (Tabelle 0-76)

Mittelwert	4,265
Standardabweichung	0,102

Abbildung 0-3: Abhängigkeit des Leitwerts von der Eintauchtiefe der Graphitanode mit einer Magnesiumkathode

Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Graphitanode mit einer Magnesiumkathode

Tabelle 0-78:	Differenz der rechnerich ermittelten Geradenparameter und experimentell ermittelten
	Werte bei einer Magnesiumkathode und Graphitanode

Eintauchtiefe Graphit	Differenz Leitwert	Differenz y-Achsenabschnitt
in cm in mS		
1	0,298	-0,3608
2	-0,596	0,7208
3	0,298	-0,3608

Tabellen und Diagramme zu Kapitel 4.2.1.1 Aluminiumkathode

 Tabelle 0-79:
 Zersetzungsspannung an einer Aluminiumkathode und einer Graphitanode

Eintauchtiefe		
Graphit	Magnesium	Zersetzungsspannung
in cm	in cm	in V
1	1	4,016
1	1	3,771
2	1	2,978
2	1	3,131
3	1	3,593
3	1	3,252

Tabelle 0-80:	Mittelwert und Standardabweichung der Zersetzungsspannung an einer
	Aluminiumkathode und einer Graphitanode (Tabelle 0-79)

Mittelwert	3,457
Standardabweichung	0,402

Abbildung 0-5: Abhängigkeit des Leitwerts von der Eintauchtiefe der Graphitanode mit einer Aluminiumkathode

Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Graphitanode mit einer Aluminiumkathode

Tabellen und Diagramme zu Kapitel 4.2.1.2

Tabellen und Diagramme zu Kapitel 4.2.1.2mit der Magnesiumkathode

Eintauchtiefe in cm		Zersetzungsspannung
Magnesium	Graphit	in V
3,3	1,5	4,0385
2,0	1,5	4,0144
1,5	1,5	4,0085
1,0	1,5	4,1638

Tabelle 0-81: Zersetzungsspannung an einer Magnesiumkathode und einer Graphitanode

Mittelwert	4,0563
Standardabweichung	0,0728

Abhängigkeit des Leitwerts von der Eintauchtiefe der Magnesiumkathode mit einer Graphitanode

Tabelle 0-82:	Abweichungen der berechneten Werte von den ermittelten Werten in Abhängigkeit
	der Eintauchtiefe der Magnesiumkathode

Eintauchtiefe in cm		Differenz (berechnet- ermittelt)		
Magnesium	Graphit	Leitwert in mS	y-Achsenabschnitt	
3,3	1,5	0,2296	-0,2606	
2,0	1,5	-0,7089	1,9813	
1,5	1,5	0,3614	-2,7640	
1,0	1,5	0,1179	1,0433	

Tabellen und Diagramme zu Kapitel 4.2.1.2 mit der Zinkkathode

Tabelle 0-83: Zersetzungsspannung an einer Zinkkathode und einer Graphitanode

Eintauchtiefe in cm		Zersetzungsspannung
Zink	Graphit	in V
3	1,5	4,517
3	1,5	3,776
2	1,5	4,391
2	1,5	3,986
1,5	1,5	3,851

Mittelwert	4,104
Standardabweichung	0,331

Tabelle 0-84: Ermittelte Leitwerte und y-Achsenabschnitte in Abhängigkeit der Eintauchtiefe der Zinkkathode mit einer Graphitanode

Eintaucht	Eintauchtiefe in cm		у-	
Zink	Graphit	in mS	Achsenabschnitt	
3	1,5	24,4889	-110,6250	
3	1,5	25,9995	-98,1722	
2	1,5	26,6222	-116,8861	
2	1,5	26,6770	-106,3255	
1,5	1,5	26,8586	-103,4352	

Mittelwert	26,1292	-107,0888
Standardabweichung	0,972	7,105

Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Zinkkathode mit einer Graphitanode

Abbildung 0-10:

Abhängigkeit des Leitwerts von der Eintauchtiefe der Zinkkathode mit einer Graphitanode

Tabellen und Diagramme zu Kapitel 4.2.1.2 mit der Aluminiumkathode

Tabelle 0-85:	Zersetzungsspannung a	n einer A	Aluminiumkat	thode und e	iner Graj	ohitanode

Eintauchtiefe	in cm		Zersetzungsspannung
Aluminium	Graphit		in V
3	1	.,5	4,2053
3	1	.,5	4,0376
2,5	1	.,5	3,3162
2	1	.,5	3,7438
2	1	.,5	3,1259
2	1	.,5	4,2739
2	1	.,5	3,8985
	Mittelwe	ert	3,8002
Standa	rdabweichu	ng	0,4371

Abbildung 0-11: Abhängigkeit des Leitwerts von der Eintauchtiefe der Aluminiumkathode mit einer Graphitanode

Abhängigkeit des y-Achsenabschnitt von der Eintauchtiefe der Aluminiumkathode mit einer Graphitanode

Tabelle 0-86:	Abhängigkeit des	Leitwerts von	der Messung	bei einer	Aluminiumkatho	de und
		Graphita	anode			

	Eitauchti	Leitwert	
Messung	Aluminium	in mS	
1	2	1,5	23,906
2	2	1,5	23,812
3	2	1,5	23,648

Mittelwert	23,7889
Standardabweichung	0,1304

Tabellen und Diagramme zu Kapitel 4.2.2

	Leitwert		Zersetzungsspannung
Nummer	in mS	Achsenabschnitt	in V
1	15,109	-64,067	4,240
2	13,695	-53,027	3,872
Mittelwert	14,402	-58,547	4,056
Standardabweichung	1,000	7,806	0,260

Tabelle 0-87:	Abweichung der	Geradenparameter	voneinander	bei einer 2H	Graphitanode
---------------	----------------	------------------	-------------	--------------	--------------

 Tabelle 0-88:
 Abweichung der Geradenparameter voneinander bei einer H Graphitanode

	Leitwert		Zersetzungsspannung
Nummer	in mS	Achsenabschnitt	in V
1	25,179	-104,509	4,151
2	15,967	-41,559	2,603
3	21,137	-93,192	4,409
4	19,064	-78,058	4,095
Mittelwert	20,337	-79,330	3,814
Standardabweichung	3 <i>,</i> 865	27,413	0,819

Tabelle 0-89: Abweichung der Geradenparameter voneinander bei einer HB Graphitanode

	Leitwert	Achsenabschnitt	Zersetzungsspannung
Nummer	in mS		in V
1	27,831	-127,757	4,591
2	27,375	-121,168	4,426
3	23,353	-99,162	4,246
4	22,561	-91,611	4,061
Mittelwert	25,280	-109,925	4,331
Standardabweichung	2,708	17,279	0,229

	Leitwert		Zersetzungsspannung
Nummer	in mS	Achsenabschnitt	in V
1	22,223	-105,603	4,752
2	21,615	-95,621	4,424
Mittelwert	21,919	-100,612	4,588
Standardabweichung	0,430	7,058	0,232

 Tabelle 0-90:
 Abweichung der Geradenparameter voneinander bei einer B Graphitanode

Tabelle 0-91:	Abweichung der	Geradenparameter	voneinander	bei einer 2	B Graphitanode
1.40.0110 0 2 1.					010000000000000000000000000000000000000

	Leitwert		Zersetzungsspannung
Nummer	in mS	Achsenabschnitt	in V
1	27,443	-130,360	4,750
2	26,409	-114,463	4,334
Mittelwert	26,926	-122,411	4,542
Standardabweichung	0,731	11,240	0,294

Tabelle 0-92:Standardabweichungen der verschiedenen Härtegrade aller Messgeraden (Tabelle 0-87
bis Tabelle 0-91)

	Standardabweichung			
	Zersetzungs- Leitwert y-Achsen-			
Härte	spannung in V	in mS	abschnitt	
2H	0,260	1,000	7,806	
н	0,819	3,865	27,413	
НВ	0,229	2,708	17,279	
В	0,232	0,430	7,058	
2B	0,294	0,731	11,240	

Tabelle 0-93: prozentuale Standardabweichungen der verschiedenen Härtegrade aller Messungen

	Prozentuale Standardabweichung in %			
	Zersetzungs- Leitwert y-Achsen-			
Härte	spannung		abschnitt	
2H	0,064	0,069	0,133	
н	0,215	0,190	0,346	
НВ	0,053	0,107	0,157	
В	0,051	0,020	0,070	
2B	0,065	0,027	0,092	

	Standardabweichung			
	Zersetzungs-	Zersetzungs- Leitwert y		
Härte	spannung in V	in mS	abschnitt	
2H	0,260	1,000	7,806	
н				
(Mittelwert)	0,658	3,990	27,607	
HB				
(Mittelwert)	0,124	0,441	4,999	
В	0,232	0,430	7,058	
2B	0,294	0,731	11,240	

 Tabelle 0-94:
 Standardabweichungen der verschiedenen Härtegrade

Tabelle 0-95: prozentuale Standardabweichungen der verschiedenen Härtegrade

	Standardabweichung in %			
	Zersetzungs-		y-Achsen-	
Härte	spannung	Leitwert	abschnitt	
2H	0,064	0,069	0,133	
н				
(Mittelwert)	0,173	0,194	0,348	
НВ				
(Mittelwert)	0,029	0,016	0,045	
В	0,051	0,020	0,070	
2B	0,065	0,027	0,092	

Tabellen und Diagramme zu Kapitel 4.2.3

Abbildung 0-13: Abhängigkeit der Strom-Spannungs-Kurve von der Konzentration >0,01 mol/L (Tabelle 0-43, Tabelle 0-44, Tabelle 0-45 und Tabelle 0-46)

Abbildung 0-14: Abhängigkeit der Strom-Spannungs-Kurve von der Konzentration <0,01 mol/L (Tabelle 0-46, Tabelle 0-47, Tabelle 0-48, Tabelle 0-49, Tabelle 0-50 und Tabelle 0-51)

Tabellen und Diagramme zu Kapitel 4.2.4

Abbildung 0-15: Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 136 Umdrehungen pro Minute (Tabelle 0-52, Tabelle 0-53)

Abbildung 0-16: Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 261 Umdrehungen pro Minute (Tabelle 0-54, Tabelle 0-55)

Anhang

Abbildung 0-17: Reproduzierbarkeit der Werte bei einer Rührfischgeschwindigkeit von 411 Umdrehungen pro Minute (Tabelle 0-56, Tabelle 0-57)

Tabellen und Diagramme zu Kapitel 4.2.5

Abbildung 0-18: Abhängigkeit der Messwerte von der Zeit bei einer 2H-Graphitanode (Tabelle 0-58, Tabelle 0-59)

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Abbildung 0-19: Abhängigkeit der Messwerte von der Zeit bei einer H-Graphitanode (Tabelle 0-60, Tabelle 0-61, Tabelle 0-62, Tabelle 0-63 und Tabelle 0-64)

Abhängigkeit der Messwerte von der Zeit bei einer B-Graphitanode (Tabelle 0-66, Tabelle 0-67, Tabelle 0-68 und Tabelle 0-69)

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Abbildung 0-21:Abhängigkeit der Messwerte von der Zeit bei einer 2B-Graphitanode
(Tabelle 0-70 Tabelle 0-71 und Tabelle 0-72)

Literaturverzeichnis

1. Lauth, Günter Jakob. Skript Physikalische Chemie FH Aachen.

2. Harten, Ulrich. *Physik für Ingeniere und Naturwissenschaftler; 5. Auflage*. Berlin Heidelberg : Springer-Verlag, 2012.

3. Milazzo, Giulio. *Elektrochemie; Grundlagen und Anwendungen; 2. Auflage*. Basel : Birkhäuser Verlag, 1980.

4. Atkins, Peter W. und de Paula, Julio. *Physikalische Chemie, 4. Auflage*. Weinheim : Wiley VCH Verlag GmbH & Co. KGaA, 2006.

5. Harmann, Carl H. und Vielstich, Wolf. *Elektrochemie, 3., vollständig überarbeitete Auflage.* Weinheim : WILEY-VCH Verlag GmbH, 1998.

6. Kaiser, Rolf und Henning, Ingo. *Physikalische Chemie für die Sekundarstufe 2; 5. Auflage.* Bad Homburg von der Höhe : Verlag Dr. Max Gehlen, 1986.

7. Engel, Thomas und Reid, Philip. Physikalische Chemie. Münschen : Pearson Studium, 2006.

8. Jäger, E.-G., Schöne, K. und Wener, G. *Elektrolytgleichgewichte und Elektrochemie*. Weinheim : Verlag Chemie, 1997.

9. Ebert, Heinz. Elektrochemie; Grundlagen und Anwendugsmöglichkeiten; 2. Auflage. Würzburg : Vogel Verlag, 1979.

10. **Riedel und Janiak.** *Anorganische Chemie, 7. Auflage.* Berlin : Walter de Gruyter GmbH & Co. KG, 2007.

11. Jander und Blasius. Lehrbuch der Analytischen und präperativen anorganischen Chemie, 16. *Auflage*. Stuttgart : S. Hirzel Verlag, 2003.

12. Housecroft, Catherine E. und Sharpe, Alan G. Anorganische Chemie, 2. vollständig überarbeitete Auflage. München : Pearson Studium, 2006.

13. **Onken, Ulfert und Behr, Arno.** *Chemische Prozesskunde; Lehrbuch der Technischen Chemie*. Stuttgart : Georg Thieme Verlag, 1996. Bd. 3.

14. ProMinent. [Online] [Zitat vom: 11. 07 2015.] http://www.prominent.de/Branchenloesungen/Schwimmbad/Desinfektion-von-Schwimmbadwassermit-Chlor.aspx.

15. Bosy. [Online] [Zitat vom: 11. 7 2015.] http://www.bosy-online.de/Elektrolytische Desinfektion.htm.

16. Fach Journal. [Online] [Zitat vom: 11. 7 2015.] http://www.ihks-fachjournal.de/elektrolytische-desinfektion-von-trinkwasser-1/.

17. Schwimmbad zu Hause. [Online] [Zitat vom: 11. 7 2015.] http://www.schwimmbad-zu-hause.de/salzwasser-elektrolyse-im-schwimmbad.

18. Technopool. [Online] [Zitat vom: 11. 7 2015.] http://www.technopool.de/de/vorteile.htm.