

Fachbereich 3 Chemie und Biotechnologie

Studiengang Angewandte Chemie

Bachelorarbeit von: Thomas Jager

Laugung eines ionenadsorbierenden Tones aus Madagaskar mit dem Ziel der Seltenen Erdelementgewinnung

FH AACHEN JNIVERSITY OF APPLIED SCIENCES

Diese Arbeit wurde betreut von:

Prof. Dr. Günter Jakob Lauth, FH Aachen (Erstprüfer)

Prof. Dr.-Ing. Dr. h.c. B. Friedrich, IME Aachen (Zweitprüfer)

Jülich, April 2014

Erklärung:

Diese Arbeit ist von mir selbstständig angefertigt und verfasst worden. Ich habe keine anderen Hilfsmittel und Quellen als die benutzt, die in der Arbeit angegeben sind.

Jülich, den 23.04.2014 (Thomas Jager) _____

Inhalt

1	Einleitung	1
2 2.1 2.2 2.3 2.4 2.5 2.6	Allgemeine Grundlagen: Seltenen Erdelemente im Periodensystem Eigenschaften der Seltenen Erdelemente Verwendung Seltener Erdelemente Lagerstätten und derzeitige Abbaugebiete Wirtschaftliche Bedeutung Erze und deren Verarbeitung (Stand der Technik) Ionenadsorbierende Tone	2 3 5 6 7 8 . 11
3 3.1 3.2 3.3	Laugungstheorie Metallausbeute und Selektivität Thermodynamik Kinetik	. 12 . 12 . 14 . 16
4 4.1 4.2 4.3 4.4	Versuchsplanung: Ziel des Versuchs Thermodynamische Modellierung zur Versuchsplanung Versuchsplanung Versuchsaufbau Versuchsdurchführung	. 19 . 20 . 22 . 23 . 24
5 5.1 5.1.1 5.1.2 5.2	Versuchsauswertung: Metallkonzentration der zu laugenden Tonfraktion Auswertung der Laugungsversuche Laugungsversuche mit verschiedenen Laugungsmitteln Kinetische Untersuchung der Laugungsversuche Fehlerbetrachtung.	. 26 . 27 . 30 . 34 . 36
6	Zusammenfassung und Ausblick	. 39
7	Abkürzungsverzeichnis & Erläuterung zu verwendeten Begriffen	. 40
8	Literaturverzeichnis	. 41
9	Anhang	. 43

Abbildungsverzeichnis

Abbildung 1: Seltene Erdelemente im Periodensystem[6]	2
Abbildung 2: Lanthanoidenkontraktion[7]	3
Abbildung 3: Verwendung Seltener Erdelemente[1]	5
Abbildung 4: Beispiele aktueller (Stand 2013) Lagerstätten der SEE[1]	6
Abbildung 5: Minenproduktion SEE Jahr 2013 in Tonnen[2]	7
Abbildung 6: Allg. Fließbild des sauren Aufschlusses am Beispiel Monazit[7]	8
Abbildung 7: Allg. Fließbild des basischen Aufschlusses am Beispiel Monazit[7]	8
Abbildung 8: E-pH Diagramm von Wasser bei 30 °C	14
Abbildung 9: Rohmaterial des ionenadsorbierenden Tons	19
Abbildung 10: E-pH Diagramm von Ce, La und Y bei 30 °C	20
Abbildung 11: E-pH Diagramm von Al und Si bei 30 °C	21
Abbildung 12: E-pH Diagramm von Fe bei 30 °C	21
Abbildung 13: Versuchsaufbau	23
Abbildung 14: Links: Laugung des IAT, rechts: Gelaugtes Material im Filter	25
Abbildung 15: SEE Metallkonzentration der zu laugenden Tonfraktion (LOK 45)	26
Abbildung 16: Vergleich der Metallausbeute bei verschiedenen LM "Sulfate"	
(SO ₄)	30
Abbildung 17: Vergleich der Metallausbeute bei verschiedenen LM (Säuren)	31
Abbildung 18: Vergleich der Metallausbeute bei verschiedenen LM	
(Salzlösungen)	31
Abbildung 19: Vergleich der Metallausbeute bei verschiedenen LM	
(Kombination)	32
Abbildung 20: Vergleich der Selektivität am Bsp. Nd, mit verschiedenen LM	
"Nitrate" (NO ₃)	33
Abbildung 21: Vergleich der Selektivität am Bsp. Nd, mit verschiedenen LM	
(Salzlösungen)	33
Abbildung 22: Metallausbeute der kinetischen Untersuchung	34
Abbildung 23: Selektivität von Nd in der kinetischen Untersuchung	35

Tabellenverzeichnis

Tabelle 1: Einteilung der SEE in LSEE und SSEE[7]	4
Tabelle 2: Beispiele aktueller (Stand 2013) Lagerstätten der SEE[1]	6
Tabelle 3: Vor- und Nachteile des IAT gegenüber anderen SEE haltigen	
Erzen[4]	11
Tabelle 4: Vergleich von Formeln 3.11 und Formel 3.12	15
Tabelle 5: Schritte des unreagierten Kern Modells	16
Tabelle 6: Geschwindigkeitsbestimmender Schritt einer idealisierten	
Laugungsreaktion	18
Tabelle 7: Verschiedene Laugungsmittel der ersten Versuchsreihe	22
Tabelle 8: Konzentration der Fremdmetallverbindungen in Tonfraktion LOK 45	26
Tabelle 9: Verschiedene Laugungsmittel der ersten Versuchsreihe	27
Tabelle 10: Werte für eine Beispielrechnung der Metallausbeute und Selektivität	27
Tabelle 11: Auswertungsrelevante Fehler	36
Tabelle 12: Werte für eine Beispielrechnung der Fehlerrechnung	37
Tabelle 13: Partielle Ableitungen von Ausdruck 4.10	38

1 Einleitung

Die Nachfrage an Seltenen Erdelementen (SEE) steigt stetig, denn geringste Mengen dieser Metalle in Legierungen, als Verbindung oder als reine Metalle verbessern die Eigenschaften verschiedenster Hightech-Produkte und Zukunfts-Technologien. Anwendungsbeispiele aus der Technik sind zu finden bei der Energieerzeugung von erneuerbaren Energien, der Elektromobilität oder in der Hochleistungsmagnettechnik. Durch letzteres lassen sich beispielsweise die Baugröße und der Energieverbrauch elektronischer Komponenten auf Leiterplatten oder Festplatten immer weiter verringern.[1]

China hat aktuell (Stand 2013) eine Art Monopolstellung auf dem Weltmarkt für Seltene Erdelemente, denn es hat mit ca. 90 % den mit Abstand größten Marktanteil.[2] Durch Ausfuhrverbote von Seltenen Erdelementen und ähnlichen Rohstoffen, werden diese künstlich durch die chinesische Regierung auf dem Markt verknappt. Diese Verknappung führt dazu, dass die SEE Lagerstätten in anderen Ländern für eine Erschließung wirtschaftlich immer interessanter werden. Dies ist gleichzeitig der Grund, warum in dieser Arbeit ein SEE haltiger ionenadsorbierender Ton (IAT) aus Madagaskar eingesetzt wird. Es wird in der Zukunft für andere Länder wirtschaftlich immer wichtiger werden, neue Seltene Erdelement-Ressourcen zu erschließen.[3]

Diese Arbeit befasst sich mit der Laugung, dem ersten Verarbeitungsschritt eines bereits abgebauten ionenadsorbierenden Tons, der Seltene Erdelemente in Ionenform an seiner Oberfläche adsorbiert enthält. Bei der Laugung wird das gewünschte Metall möglichst selektiv in Lösung gebracht und kann dann anschließend als Verbindung gefällt und weiterverarbeitet werden. Die Gesamtkonzentrationen an Seltenen Erdelementen in diesen Tonen sind geringer, als bei den sonst verarbeiteten Erzen. Diese enthalten jedoch meist das radioaktive Element Thorium, welches den Abbau aufwendiger macht und die Umwelt belastet. Ionenadsorbierende Tone weisen dieses Merkmal nicht auf und enthalten eine höhere Konzentration von den selteneren und somit wertvolleren schweren Seltenen Erdelementen (SSEE). Des Weiteren lässt sich der IAT hydrometallurgisch relativ leicht verarbeiten, da er nicht in mehrstufigen Prozessen aufgeschlossen werden muss. Der IAT lässt sich leicht abbauen und benötigt keinen Mahlprozess, da er an der Erdoberfläche abgelagert ist und bereits in geringer Korngröße vorliegt.[4]

Ziel dieser Arbeit ist eine wirtschaftliche und technische effiziente Möglichkeit zu entwickeln, die Seltenen Erdelemente des IAT durch Laugung in eine wässrige Lösung zu überführen. Dafür werden geeignete Laugungsmittel und Prozessparameter erarbeitet. Zusätzlich wird nach Ermittlung des geeignetsten Laugungsmittels eine kinetische Versuchsbetrachtung des Prozesses erfolgen.

2 Allgemeine Grundlagen: Seltenen Erdelemente im Periodensystem

Als Seltene Erdelemente werden 17 chemisch ähnliche metallische Elemente des Periodensystems bezeichnet. Sie werden über die Elektronenkonfiguration (Auffüllung des 4f-Orbitals) definiert. Neben Scandium und Yttrium fallen die 15 Elemente der Lanthanoide unter diese Bezeichnung (siehe Abbildung 1). Diese Elemente kommen wegen ihrer chemischen Ähnlichkeit, bis auf das radioaktive Promethium, in verschiedensten Mineralien nur vergesellschaftet in der Natur vor und verhalten sich weitestgehend, wie eine einzelne chemische Einheit.[5]

Abbildung 1: Seltene Erdelemente im Periodensystem[6]

2.1 Eigenschaften der Seltenen Erdelemente

Seltene Erdelemente (SEE) haben durch ihre ähnliche Elektronenkonfiguration sehr ähnliche chemische und physikalische Eigenschaften, was sie schwer voneinander trennbar macht. Dieses ist die Folge der Kontraktion der Elektronenhüllen der Lanthanoide, die als Lanthanoidenkontraktion bezeichnet wird. Denn wie in Abbildung 2 zu sehen ist haben die Lanthanoide ähnlich große Ionenradien, da die nicht vollständig abgeschirmten 4f-Elektronen mit steigender Kernladung stärker zum Atomkern gezogen werden. Daraus folgt, dass die Ordnungszahl und das Atomgewicht der Lanthanoide steigen, doch die Atomgröße stetig abfällt. Das radioaktive Thorium hat einen ähnlich großen Ionenradius, wie die SEE, was erklärt warum es in den gleichen Mineralien vorkommt. Charakteristisch für die Seltenen Erdelemente ist die Oxidationszahl +III, in der alle Elemente auftreten. Einige Elemente können aber auch in anderen Wertigkeiten auftreten, was auf die zusätzliche Stabilität des leeren, halbgefüllten oder vollen 4f-Orbitals zurückzuführen ist (Eu²⁺ Yb²⁺ Ce⁴⁺ Tb⁴⁺). Seltene Erdelemente sind sehr elektropositiv und reaktionsfähig. Sie haben eine geringe Leitfähigkeit und liegen meist in der hexagonal dichtesten Kugelpackung vor. Außerdem sind sie stark lithophil, sie bilden Oxide.[7]

Abbildung 2: Lanthanoidenkontraktion[7]

Seltene Erdelemente werden nach ihrer Elektronenkonfiguration in leichte Seltene Erdelemente (LSEE) und schwere Seltene Erdelemente (SSEE) eingeteilt (siehe Tabelle 1). Diese Einteilung ist durch die Besetzung der 4f Schale und dem Spin der Elektronen begründet.

Leichte Seltene Erdelemente (LSEE): Von Lanthan bis Gadolinium wird pro Element immer ein ungepaartes Elektron in der 4f Schale hinzugefügt. Scandium wird aufgrund ähnlicher chemischer Eigenschaften den LSEE zugeteilt.

<u>Schwere Seltene Erdelemente (SSEE)</u>: Von Terbium bis Lutetium wird pro Element immer ein Elektron der 4f Schale hinzugefügt, was sich mit dem vorhandenen Elektron zu einem Paar mit unterschiedlichem Spin verbindet. Yttrium wird aufgrund der chemischen Eigenschaften den SSEE zugeteilt.[7]

leichte Seltene Er	delemente (LSEE)	schwere Seltene Erdelemente (SSEE)		
Elementname Elementsymbol		Elementname	Elementsymbol	
Scandium	Sc	Yttrium	Y	
Lanthan	La	Terbium	Tb	
Cer	Ce	Dysprosium	Dy	
Praseodym	Pr	Holmium	Ho	
Neodym	Nd	Erbium	Er	
Promethium	Pm	Thulium	Tm	
Samarium	Sm	Ytterbium	Yb	
Europium	Eu	Lutetium	Lu	
Gadolinium	Gd			

Tabelle 1: Einteilung der SEE in LSEE und SSEE[7]

2.2 Verwendung Seltener Erdelemente

Seltene Erdelemente verbessern in Metalllegierungen, als reine Metalle oder als Verbindungen die Eigenschaften verschiedenster Hightech-Produkte und Zukunfts-Technologien. Die Übersicht in Abbildung 3 zeigt, dass die Anwendungsgebiete für Seltene Erdelemente sehr breit gefächert sind. Sie reichen von Produkten aus dem Alltag, wie Energiesparlampen bis hin zur Luft- und Raumfahrttechnik.[1]

Abbildung 3: Verwendung Seltener Erdelemente[1]

2.3 Lagerstätten und derzeitige Abbaugebiete

Derzeitige Lagerstätten für Seltene Erdelement haltige Erze befinden sich an unterschiedlichen Orten auf der Welt (siehe Abbildung 4 und Tabelle 2). Der Abbau ist aufgrund ihrer geringen Konzentration, aber nur in wenigen Ländern wirtschaftlich. Aktuell (Stand 2013) werden nur die beiden in China befindlichen Lagerstätten wirklich abgebaut, was man an der weltweiten Produktion Seltener Erdelemente erkennen kann, denn China hat einen Weltmarktanteil von ca. 90 %. Die restlichen 10 % sind auf Russland, Australien, U.S.A und Indien aufgeteilt (siehe Abbildung 5).[1][2]

Abbildung 4: Beispiele aktueller (Stand 2013) Lagerstätten der SEE[1]

Tabelle 2: Beispiele aktueller	(Stand 2013) Lagerstätten der	SEE[1]
--------------------------------	-------------------------------	--------

1:	Mountain Pass (U.S.A)	4:	Vanrhynsdorp (Süd Afrika)
2:	Bayan Obo (Nord China)	5:	Weishan (Süd China)
3:	Trivandrum (Süd Indien)	6:	Mount Weld (Australien)
7:	Madagaskar (Süd Afrika)	8:	Saskatchewan (Kanada)

2.4 Wirtschaftliche Bedeutung

China hat aktuell (Stand 2013) eine Art Monopolstellung auf dem Weltmarkt für Seltene Erdelemente, denn es hat mit ca. 90 % den mit Abstand größten Marktanteil. Die restlichen 10 % sind auf Russland, Australien, U.S.A und Indien aufgeteilt (Werte unter 250 Tonnen werden vernachlässigt) (siehe Abbildung 5). Durch Ausfuhrverbote von Seltenen Erdelementen und ähnlichen Rohstoffen, werden diese künstlich durch die chinesische Regierung auf dem Weltmarkt verknappt. Diese Verknappung führt dazu, dass die SEE Lagerstätten aus anderen Ländern für eine Erschließung wirtschaftlich immer interessanter werden.[1][2]

Abbildung 5: Minenproduktion SEE Jahr 2013 in Tonnen[2]

2.5 Erze und deren Verarbeitung (Stand der Technik)

Die Seltenen Erdelemente (SEE) kommen in vielen Mineralien vor. Wirtschaftliche Bedeutung haben, aber nur die SEE haltigen Erze Xenotim, Monazit und Bastnäsit. Sie werden abgebaut, gemahlen und dann im sauren oder basischen Aufschluss in Lösung gebracht und weiterverarbeitet (siehe Abbildung 6 und Abbildung 7). Das nun in der Lösung enthaltene radioaktive Thorium wird als Salz gefällt und abgetrennt. Die Lösung enthält jetzt noch ein Gemisch aus Metallionen, das alle 17 SEE enthalten kann.[7]

Abbildung 7: Allg. Fließbild des basischen Aufschlusses am Beispiel Monazit[7]

Es gilt nun die Seltenen Erdelemente zu separieren und als Einzelelement darzustellen. Dies stellt eine Schwierigkeit durch die ähnlichen Eigenschaften der SEE dar. Im Folgenden werden die häufigsten Verfahren zur Separation und Einzelelementdarstellung in einem kurzen Überblick erläutert.

Separation:

Solventextraktion:

Die Extraktion ist die Trennung eines Metalls von einem anderen mit Hilfe eines Extraktionsmittels. Bei der Solventextraktion spricht man von einer flüssig-flüssig Extraktion (meist im Gegenstrom). Aus dem flüssigen Feed (enthält Träger und Wertstoff) wird durch Stoffaustausch mit einer anderen, mit dem Feed nicht mischbaren Flüssigkeit, dem Extraktionsmittel (Solvent), der in beiden lösliche Wertstoffe selektiv extrahiert. Durch geeignete Wahl des Extraktionsmittels können ausgewählte Komponenten aus einem Multikomponentengemisch selektiv abgetrennt werden. Die Extraktion der SEE, mit einem sauren Extraktionsmittel, lässt sich durch die vereinfachte Reaktionsgleichung beschreiben (siehe chemische Reaktion 2.1).[7]

SEE³⁺ (aq) + 3 HR_{org} (s) \Rightarrow (SEE)R_{3org} (s) + 3 H⁺ (aq)

2.1

Rorg: Organischer Rest

Aufgrund des Dichteunterschiedes der wässrigen und organischen Phase, können diese anschließend durch Phasentrennung voneinander getrennt und weiterverarbeitet werden. Da das Metall aus der organischen Phase nicht direkt zu gewinnen ist, muss ein sogenanntes Stripping durchgeführt werden, was verfahrenstechnisch einer umgekehrten Extraktion entspricht.[7]

Ionenaustausch und Komplexbildung:

lonenaustausch und Komplexbildung sind zusammen eine effektive Methode zur selektiven Trennung Seltener Erdelemente. Bei einem Ionenaustausch werden Ionen gleichnamiger Ladung ersetzt. An einem geeigneten Ionentauschermaterial werden die auszutauschenden Ionen gebunden und die vorher gebunden Ionen in die Lösung abgegeben, was einer Fest-Flüssig Extraktion entspricht. Die Tendenz der Seltenen Erdelementionen zum Kationentausch wird hierbei genutzt (siehe chemische Reaktion 2.2).[7]

SEE³⁺ (aq) + 3 HR (s)
$$\rightleftharpoons$$
 (SEE)R₃ (s) + 3 H⁺ (aq) 2.2

R: Rest

Bei dem Kationenaustausch werden bevorzugt Ionen mit einem großen Radius ausgetauscht. Die Reaktion nimmt also vom Lutetium bis zum Lanthan zu. Dieser Effekt reicht allerdings noch nicht für die Trennung aus. Deshalb werden zusätzlich organische Komplexbildner, wie EDTA eingesetzt, denn dann verläuft die Komplexbildungstendenz umgekehrt proportional zur Ionenaustauschtendenz. Der Ionentauscher der nun die SEE enthält wird mit einer Waschlösung in der sich ein geeigneter Komplexbildner befindet gewaschen. Hierbei werden die kleinen/schweren Seltenen Erdelemente bevorzugt komplexiert (siehe chemische Reaktion 2.3).[7]

$$(SEE)R3 (s) + 4 HZ (aq) \rightleftharpoons H(SEE)Z_4 (aq) + 3 HR (s)$$
 2.3

Z: Komplexbildner

R: Rest

Da das Metall aus der organischen Phase nicht direkt zu gewinnen ist, kann ein sogenanntes Stripping durchgeführt werden, was verfahrenstechnisch einer umgekehrten Extraktion entspricht.[7]

Einzelelementdarstellung (Reduktion):

Metallothermie:

Die Metallothermie ist ein allgemeiner Verfahrensbegriff und wird zur Einzelelementdarstellung von Seltenen Erdelementen (SEE) genutzt. Diese Verfahren laufen bei hohen Temperaturen und unter einer Schutzgasatmosphäre z.B. Stickstoff ab, da die Seltenen Erdelemente bei hohen Temperaturen sofort mit dem Sauerstoff aus der Umgebungsluft reagieren würden. Zur Veranschaulichung einer metallothermischen Reaktion wird im Folgenden eine Calciothermie der SEE gezeigt (siehe chemische Reaktion 2.4). Bei dieser Reaktion, wird SEE (+III) zu Elementarem SEE mit der Oxidationsstufe 0 reduziert und Elementares Ca mit der Oxidationsstufe 0 zu Ca (+III) oxidiert.[7]

$$3 \text{ Ca} + 2 (\text{SEE})\text{F}_3 \rightleftharpoons 2 \text{ SEE} + 3 \text{ Ca}\text{F}_2$$
2.4

2.6 Ionenadsorbierende Tone

Ionenadsorbierende Tone (IAT) entstehen durch allitische Verwitterung, also durch tropische Temperaturen, starke Regenfälle und Korrosion von Gestein. Die enthaltenen Mineralien werden weiter zersetzt, dabei werden leichtlösliche Anteile Mineralien durch Niederschlag fortgespült. Es kommt einer der zu Rückstandsanreicherung an schwerlöslichen Elementen und Elementen mit hoher Dichte. Unter anderem bleibt auch Eisenoxid zurück, was die rötliche Farbe des Tons erklärt.[8] Die Seltenen Erdelemente (SEE) liegen in Ionenform an der Oberfläche wird ein adsorbiert vor. Für diese Adsorption des IAT magnetischer Bindungsmechanismus postuliert.[4] Nach aktuellem Stand der Technik (Stand 2013) werden diese Tone mit den für SEE haltige Erze üblichen Laugungsmitteln Salzsäure, Salpetersäure und Schwefelsäure verarbeitet. Im aktuellen Stand der Forschung (Stand 2013) werden Laugungsversuche mit vielen verschiedenen Salzlösungen, wie zum Beispiel Ammoniumchlorid (NH₄Cl) oder Natriumsulfat (Na₂SO₄) durchgeführt. Denn über einen Kationenaustausch können dort SEE³⁺-Ionen Na⁺-Ionen mit den ausgetauscht werden.[4][9][10] z.B. Die ionenadsorbierenden Tone bieten viele Vorteile, allerdings auch einen Nachteil gegenüber anderen Seltenen Erdelement haltigen Erzen (siehe Tabelle 3).[4]

Vorteile	Nachteile
Einfach abbaubar, da an der Erdoberfläche abgelagert	Geringe Gesamtkonzentration an SEE
Kein Aufbrechen des Erzes erforderlich, da geringe Korngröße bereits vorhanden	
Hohe Konzentration von wertvolleren SSEE	
Sehr geringe Konzentration von radioaktiven Verunreinigungen	
Lässt sich hydrometallurgisch relativ leicht verarbeiten, da kein mehrstufiger Aufschlussprozess stattfinden muss	

Tabelle 3: Vor- und Nachteile des IAT gegenüber anderen SEE haltigen Erzen[4]

3 Laugungstheorie

Bei der Hydrometallurgie geht es darum, metallische Elemente mit einem geeigneten Lösungsmittel möglichst selektiv in Lösung zu bringen. Dieses Lösungsmittel wird als Laugungsmittel bezeichnet. Sind die Metalle in die wässrige Phase übergegangen, wird die gewonnene Lösung gereinigt und das Metall meist als Verbindung gefällt. Bei der Laugung kann das Lösungsverhalten über Parameterveränderungen wie z.B. Temperatur, pH-Wert, Durchmischung (Rührerform), Oberfläche (Korngröße) und Laugungsmittelkonzentration beeinflusst werden. Folgend ein Reaktionsbeispiel mit Schwefelsäure als Laugungsmittel (siehe chemische Reaktion 3.1).[11]

$$MeO + H_2SO_4 \rightleftharpoons MeSO_4 + H_2O \qquad 3.1$$

Me: Metall

3.1 Metallausbeute und Selektivität

Metallausbeute:

Um die Effektivität einer Laugung zu bestimmen wird die Metallausbeute R (siehe Formel 3.2) genutzt. Diese gibt den prozentualen Anteil des Metalls an, der vom Ausgangsmaterial in Lösung gegangen ist.[11]

$$R = \frac{m(Metall)_{L\ddot{o}sung}}{m(Metall)_{Konzentrat}}$$
3.2

R: Metallausbeute

m(Metall)_{Lösung}: Masse der Metallionen in der Lösung

m(Metall)_{Konzentrat}: Masse der Metallionen im Ausgangskonzentrat

Die Masse der Metallionen in der Lösung können anhand folgender Gleichungen berechnet werden:

$$m(Metall)_{Lösung} = c(Metall) * V_{Lösung}$$
 3.3

m(Metall)_{Lösung}: Masse der Metallionen in der Lösung

c(Metall): Konzentration der Metallionen in der Lösung

V_{Lösung}: Volumen der Lösung

Ist das Konzentrat ein Feststoff so wird die Formel 3.4 angewendet.

 $m(Metall)_{Konzentrat} = m(Feststoff) * X(Metall)$ 3.4

m(Metall)_{Konzentrat}: Masse der Metallionen im Ausgangskonzentrat

m(Feststoff): Masse des Feststoffes

X(Metall): Verhältnis der Metallionen zur Gesamtkonzentration

Selektivität:

Die Selektivität S beschreibt das Verhältnis des zu gewinnenden Metalls zum Fremdmetall bzw. der Verunreinigung (siehe Formel 3.5). Werte von S \geq 1 bedeuten, dass die Ausbeute der Fremdmetalle niedriger ist als die des gewünschten Metalls. Je größer der Zahlenwert für S ist, desto selektiver ist die Laugung. Für Laugungen die das Ziel haben, das gewünschte Metall im Rückstand zu halten, entspricht ein kleiner Zahlenwert für S einer selektiven Laugung.[11]

$$S = \frac{R(Metall)}{R(Fremdmetall)}$$

3.5

S: Selektivität

R(Metall): Metallausbeute des gewünschten Metalls

R(Fremdmetall): Metallausbeute des Fremdmetalls

3.2 Thermodynamik

Die Thermodynamik beschäftigt sich mit der Frage, ob eine chemische Reaktion unter den gegebenen Prozessparametern ablaufen kann oder nicht. Dabei spielt das thermodynamische Gleichgewicht eine große Rolle. Wenn dieses erreicht worden ist, findet bei gleichbleibenden Prozessbedingungen nach idealisiertem Modell keine Reaktion mehr statt. Zur optischen Darstellung von Gleichgewichten und der Stabilitätsbereiche der Metallionen in wässriger Lösung, werden in der Hydrometallurgie häufig Pourbaix-Diagramme (auch E-pH Diagramme genannt) angewandt. In diesen, wird das Oxidationspotential E gegen den pH-Wert, anhand der thermodynamischen Daten der beteiligten Stoffe und bei konstanten Prozessparametern, wie Druck, Temperatur, etc. aufgetragen. So kann visualisiert werden, in welchen Bereichen bestimmte Stoffe oder Stoffgemische existieren können. Die Stabilitätsgrenzen des Wassers eines E-pH-Diagramms, werden bei der Software FactSage Version 6.4, das zur Modellierung in Abschnitt 3.1 zur Versuchsplanung genutzt wird, als zwei gestrichelte Linien dargestellt. Diese haben aleiche Steigung und verlaufen somit parallel. die Außerhalb dieser Stabilitätsgrenzen kann Wasser zu Wasserstoff und Sauerstoff gespalten werden (siehe Abbildung 8). Der Bereich innerhalb der gestrichelten Linien ist also für die Laugung relevant.[12][13]

Abbildung 8: E-pH Diagramm von Wasser bei 30 °C

Die Stabilitätsgrenzen des Wassers im E-pH Diagramm, werden mit Hilfe der Nernst-Gleichung (siehe Formel 3.6) exemplarisch hergeleitet. Die Berechnung anderer Gleichgewichtsgrenzen erfolgt äquivalent über thermodynamische Daten, der an den jeweiligen Reaktionen beteiligten Reaktanden.[12][13]

$$E (Red/Ox) = E_0(Red/Ox) + \frac{R*T}{v_e*F} * \log(\frac{a_{Ox}}{a_{Red}})$$
3.6

E: Elektrodenpotenzial/Oxidationspotenzial; E₀: Standardelektrodenpotenzial

T: Temperatur in K; R: ideale Gaskonstante (8,31447 J*mol⁻¹*K⁻¹);

v_e: Anzahl der übertragenen Ladungen; F: Faraday-Konstante (96485 J*V⁻¹*mol⁻¹); a: Aktivität des betreffenden Redox-Partners

Für die obere Gleichgewichtslinie des Wassers gilt:

$$\frac{1}{4} O_2(g) + H^+(aq) + e^- \rightleftharpoons \frac{1}{2} H_2O(I) \quad E_0 = 1,23 V$$
 3.7

Als Vereinfachung, wird für ideale Gase die Aktivität mit dem Partialdruck gleichgesetzt und als Atmosphärendruck (1 atm) angenommen. Für H_2O ist der Aktivitätswert im Wasser selbst 1.[13] In die Nernst-Gleichung (Formel 3.6) eingesetzt, ergibt sich folgernder Ausdruck:

$$E = \mathbf{1}, \mathbf{23} \mathbf{V} + \frac{R * T}{1 * F} * \log(\frac{p(O_2)^{1/4} * a(H^+)}{a(H_2 O)^{1/2}})$$
3.8

Für die untere Gleichgewichtslinie des Wassers gilt:

$$H^{+}(aq) + e^{-} \rightleftharpoons \frac{1}{2} H_{2}(g) \quad E_{0} = 0 V$$
 3.9

Daraus folgt, durch einsetzten in Formel 3.6:

$$E = \mathbf{0} \mathbf{V} + \frac{R * T}{1 * F} * \log(\frac{a(H^{+})}{p(H_2)^{1/2}})$$
3.10

Durch Umformung und Anwendung der Logarithmengesetze, ergibt sich aus Formel 3.8 und 3.10 die direkte pH-Wertabhängigkeit (Formel 3.11 und 3.12 in Tabelle 4).

Tabelle 4: Vergleich von Formeln 3.11 und Formel 3.12

Formel 3.8 → Formel 3.11	Formel 3.10 → Formel 3.12
Formel 3.11	Formel 3.12
$E = 1,23 V - \frac{R * T}{F} * ln(10) * pH$	$E = \mathbf{0V} - \frac{R * T}{F} * \ln(10) * pH$

Werden nun die beiden Formeln 3.11 und 3.12 in Tabelle 4 verglichen (gelb markiert) ist zu erkennen, dass die obere Linie sich nur durch ihren Ordinatenschnittpunkt unterscheidet. Da Temperatur und pH-Wert gleich sind, haben beide Geraden die gleiche Steigung und verlaufen parallel mit dem Abstand von 1,23 V.

3.3 Kinetik

Die Kinetik beschäftigt sich mit der Frage, wie schnell eine chemische Reaktion stattfindet. Die kinetische Prozessbetrachtung ist essenziell um Prozesse technisch und somit auch wirtschaftlich zu optimieren. Der geschwindigkeitsbestimmende Schritt ist hierbei der langsamste Teilschritt der Gesamtreaktion und somit verbesserungswürdig, sofern die Wirtschaftlichkeit des Prozesses erhalten bleibt. Theoretische Modelle können hierbei hilfreich sein. Bei fest/flüssig Laugungsreaktionen, ist das Modell des unreagierten Kerns, das "Unreacted Core Model", am anschaulichsten. Dabei wird davon ausgegangen, dass die Reaktion nur an der Grenzschicht eines ideal kugelförmigen Partikels stattfindet. Das idealisierte Modell besteht aus fünf aufeinanderfolgenden Teilschritten (siehe Tabelle 5), von denen jeder der geschwindigkeitsbestimmende Schritt sein kann. Allerdings können diese Schritte in der Realität nicht immer genau voneinander abgegrenzt werden. Folgende Reaktion wird dabei vorausgesetzt (siehe chemische Reaktion 3.13).[14]

 $A + b * B \rightleftharpoons p * P + r * R$

3.13

A: Fluid; B: Partikel; P: Produkt; R: Rest

Kleinbuchstaben: stöchiometrische Faktoren

Tabelle 5: Schritte des unreagierten Kern Modells

Schritt 1	Filmdiffusion	Diffusion des Reaktionsfluids an die Oberfläche des Partikels.
Schritt 2	Randschichtdiffusion	Diffusion des Reaktionsfluids durch die schon rea- gierte Außenschicht zur Partikeloberfläche.
Schritt 3	Oberflächenreaktion	Chemische Reaktion des Reaktionsfluids an der Kernoberfläche.
Schritt 4	Rückdiffusion	Rückdiffusion des Reaktionsproduktes durch die Außenschicht des schon reagierten Bereichs.
Schritt 5	2.Rückdiffusion	Rückdiffusion des Reaktionsproduktes in das um- gebende Fluid.

Einige Schritte können beispielsweise wegfallen, wenn die Reaktion ohne festes Produkt erfolgt, treten Schritt 2 und 4 nicht auf, da dort dann keine Randschicht vorhanden ist. Wenn die Reaktion irreversibel ist oder mit einem festen Produkt erfolgt, treten Schritt 4 und 5 nicht auf, da die Reaktion nur in eine Richtung verlaufen kann. Im Folgenden wird der Ablauf der einzelnen Schritte beschrieben und mathematisch erläutert.[14] **Schritt 1:** Durch den Konzentrationsunterschied diffundiert das Reaktionsfluid bis zur Partikeloberfläche. Dabei sind die Partikeloberfläche und der Stoffübergangskoeffizient entscheidend. Dieser Vorgang kann mathematisch beschrieben werden (siehe Formel 3.14).[14]

$$-\frac{dN_A}{dt} = O_p * \beta * (c_{Af} - c_{Ap}) = \text{konstant}$$
3.14

 $\frac{dN_A}{dt}$: umgesetzte Stoffmenge des Reaktionsfluids in mol pro Zeit

c_{Af}: Konzentration des Reaktionsfluids im Partikel

c_{Ap}: Konzentration des Reaktionsfluids am Partikel

O_p: Partikeloberfläche

β: Stoffübergangskoeffizient

Schritt 2: Dieser Schritt findet in der schon reagierten Außenschicht des Partikels statt und ist ebenfalls ein Diffusionsschritt. Entscheidend hierbei, sind der Diffusionskoeffizient und die Diffusionsstrecke. Sie beeinflusst den Prozess zeitabhängig und wird pro Zeiteinheit immer größer, da die Reaktionsoberfläche zum Kerninneren wandert und die Diffusionsstrecke erhöht (siehe Formel 3.15).[14]

$$-\frac{dN_A}{dt} = O_k * D_{ur} * (dc_A/dr) = konstant$$
3.15

Ok: Oberfläche Partikelkern

Dur: Diffusionskoeffizient innerhalb der unreagierten Randschicht

dr: Differenzial des Radius des unreagierten Partikelkerns

 (d_{cA}/dr) : Konzentrations
gradient des Reaktionsfluids in der gebildeten Randschicht

Schritt 3: In diesem Schritt hat die temperaturabhängige Reaktionsgeschwindigkeitskonstante den größten Einfluss. Es wird eine Reaktion erster Ordnung für die Oberflächenreaktion angenommen (siehe Formel 3.16).[14]

$$\frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dt}} = \mathrm{O}_{\mathrm{k}} * \mathrm{k} * \mathrm{c}_{\mathrm{O}_{\mathrm{k}}}^{\mathrm{A}} = \mathrm{konstant}$$
 3.16

k: Reaktionsgeschwindigkeitskonstante (temperaturabhängig)

 $c_{O_{k}}^{A}$: Konzentration des Reaktionsfluids am Partikelkern

Über die Arrhenius-Gleichung (siehe Formel 3.17) wird die temperaturabhängige Reaktionsgeschwindigkeitskonstante k beschrieben.

$$k = k_0 * e^{\frac{-E_a}{R*T}}$$
 3.17

k₀: Faktor; E_a: Aktivierungsenergie

R: ideale Gaskonstante; T: Temperatur in K

Schritt 4 und Schritt 5: Diese beiden Schritte sind Schritt 1 und Schritt 2 sehr ähnlich. Prozessbedingungen und mathematische Beschreibung unterscheiden sich kaum voneinander, deshalb wird auf mathematische Erläuterung dieser Schritte verzichtet.

Tabelle 6 beschreibt den Proportionalitätszusammenhang zwischen Laugungszeit und Umsetzungsrate X (hier Metallausbeute). Diese ergeben sich durch Vereinfachung genannten aus den oben Formeln. Bei dem geschwindigkeitsbestimmenden Schritt einer idealisierten Laugungsreaktion, können zwei Fälle betrachtet werden. Zum einen der Fall einer konstanten Partikelgröße einer idealisierten Kugel, zum anderen der Fall eines schwindenden Partikels. Besteht ein linearer Zusammenhang bei einer der Proportionalitäten, so ist das ein Indiz dafür, dass dieser Teilschritt der geschwindigkeitsbestimmende ist.[14]

Tabelle 6: Geschwindigkeitsbestimmender Schritt einer idealisierten Laugungsreaktion

inte jröße	Filmdiffusion		Randschichtdiffusion	Oberflächenreak- tion
konsta Partikelç	Kugel	$t \propto X$	$t = 1 - 3(1 - X)^{\frac{2}{3}} + 2(1 - X)$	$t \propto 1 - (1 - X)^{\frac{1}{3}}$
ender el	kleine Partikel	$t \propto 1 - (1 - X)^{\frac{2}{3}}$		$t \propto 1 - \left(1 - X\right)^{\frac{1}{3}}$
Schwind Partik	große Partikel	$t \propto 1 - (1 - X)^{\frac{1}{2}}$		$t \propto 1 - (1 - X)^{\frac{1}{3}}$
t: Laugungszeit; X: Umsetzungsrate (hier Metallausbeute)				

4 Versuchsplanung: Ziel des Versuchs

Das Ausgangsmaterial, ist ein roter ionenadsorbierenden Ton (IAT) aus Madagaskar, der Seltene Erdelemente (SEE) in Ionenform an seiner Oberfläche adsorbiert enthält (siehe Abbildung 9). Die Konzentrationen der SEE und der enthaltenen Fremdmetallverbindungen der verwendeten Tonfraktion befinden sich im Kapitel 4. Dieser IAT bietet nur einen kleinen physischen Widerstand, er lässt sich mit den Fingern zu Staub zermahlen und löst sich in Flüssigkeiten sofort auf. Aus diesem Material sollen die an der Oberfläche adsorbierten Seltenen Erdelementionen möglichst selektiv in die wässrige Phase überführt werden.

Abbildung 9: Rohmaterial des ionenadsorbierenden Tons

4.1 Thermodynamische Modellierung zur Versuchsplanung

Zur optischen Darstellung von Gleichgewichten und der Stabilitätsbereiche der Metallionen in wässriger Lösung, werden in der Hydrometallurgie häufig E-pH Diagramme angewandt. In diesen werden Gleichgewichte in Abhängigkeit von Oxidationspotential, pH-Wert anderer Prozessparameter, und anhand thermodynamischer Daten der beteiligten Stoffe erstellt. Diese beeinflussen die Extrahierbarkeit eines Metalls in die wässrige Lösung. In diesen Diagrammen kann aufgezeigt werden, in welchen Bereichen bestimmte Stoffe oder Stoffgemische existieren können. Die Stabilitätsgrenzen des Wassers werden bei der verwendeten Software FactSage Version 6.4, als zwei gestrichelte Linien dargestellt. Sie haben die gleiche Steigung und verlaufen parallel. Außerhalb dieser Stabilitätsgrenzen kann Wasser zu Wasserstoff und Sauerstoff gespalten werden. Der Bereich innerhalb der gestrichelten Linien ist also für die Laugung relevant. Aufgetragen wird Oxidationspotential E in Volt gegen den pH-Wert bei konstantem Druck, Temperatur und Konzentration der beteiligten Stoffe.

Im Folgenden wird ein E-pH Diagramm der Seltenen Erdelemente (SEE) Ce, La und Y bei einer Konzentration von 0,0015 mol/L und einer Temperatur von 30 °C abgebildet (siehe Abbildung 10), was dem ungefähren Gehalt der einzelnen SEE im Ausgangsmaterial entspricht (siehe Kapitel 4). Um zu entscheiden in welchem pH-Wert Bereich die Laugung stattfinden soll, wurden SEE ausgewählt, die als Vertreter für eine Gruppe verschiedener Seltene Erdelemente stehen sollen. Lanthan steht als Beispiel für leichte Seltene Erdelemente (LSEE), Yttrium steht als Beispiel für schwere Seltene Erdelemente (SSEE) und Cer (unter Standardbedingungen Cer⁴⁺) steht als Beispiel für die SEE, die verschiedene Oxidationszahlen annehmen können (schräge Ordinate). Es wird sich für den sauren pH-Wert Bereich entschieden, da wie in Abbildung 10 zu sehen ist, dort alle gewünschten Elemente in Ionenform vorliegen.

Abbildung 10: E-pH Diagramm von Ce, La und Y bei 30 °C

Um mögliche Einflüsse von Fremdmetallen auf die Laugung zu betrachten, wurden weitere E-pH Diagramme der drei am häufigsten in der Tonfraktion vorkommenden Fremdmetalle Silicium, Aluminium und Eisen unter gleichen Laugungsbedingungen, allerdings bei einer Konzentration von 0,15 mol/L erstellt. Dies entspricht dem ungefähren Gehalt dieser Elemente in der zu laugenden Tonfraktion. Dabei ist zu sehen, dass unter diesen Prozessbedingungen, bei der die Laugung der SEE durchgeführt werden soll (Temperatur von 30 °C, pH-Wert sauer), Silicium theoretisch nicht in Lösung geht, Aluminium und Eisen allerdings schon (siehe Abbildung 11 und Abbildung 12).

Abbildung 11: E-pH Diagramm von Al und Si bei 30 °C

Abbildung 12: E-pH Diagramm von Fe bei 30 °C

4.2 Versuchsplanung

Auf der Basis einer Literaturrecherche, wurden die Versuchsbedingungen für die Versuchsreihe ausgearbeitet. Vor Planungsbeginn wurden 26 Tonfraktionen aus Madagaskar auf ihre Metallkonzentration in Bezug auf Seltene Erdelemente mit der ICP-MS Methode im Chemielabor IML Aachen von Herrn Stoltz analysiert (siehe Anhang). Eine Tonfraktion mit einer im Vergleich zu anderen Fraktionen relativ hohen Metallkonzentration an SEE, wird für die Laugungsversuche genutzt, da geringe Nachweisgrenzen im gelaugten Material nicht unterschritten werden sollen.

Für die Laugung sollen die üblichen Standard Laugungsmittel für Seltene Erdelement haltige Erze Salzsäure, Salpetersäure und Schwefelsäure eingesetzt werden. Da die Seltenen Erdelementionen vorwiegend adsorbiert an dem Material vorliegen und die Laugung selektiv durchgeführt werden soll, werden die Säurekonzentrationen auf 0,1 mol/L und 0,5 mol/L begrenzt. Aus der Literaturrecherche ergibt sich, dass in der Forschung an Laugungen der IAT mit Salzlösungen gearbeitet wird. Dieser Ansatz wird übernommen um eigene Resultate zu ermitteln. Als Laugungsmittel werden Salzlösungen mit Natriumchlorid, Ammoniumchlorid, Natriumsulfat, Ammoniumsulfat, Natriumnitrat und Ammoniumnitrat bei einer Konzentration von 0,5 mol/L eingesetzt. Außerdem wird der Ansatz der Salzlösungs-Laugung erweitert. Es wird eine Kombination aus einer Säure mit der Konzentration von 0,1 mol/L und einer Salzlösung mit einer Konzentration von 0,5 mol/L eingesetzt (siehe Tabelle 7), um zu überprüfen wie sich dieses System verhalten wird. Dabei werden immer Sulfate mit Schwefelsäure, Nitrate mit Salpetersäure und Chloride mit Salzsäure kombiniert. Um eine kinetische Versuchsbetrachtung zu erstellen, wird nach der Auswertung der Analyseergebnisse, eine weitere Versuchsreihe mit dem Laugungsmittel, welches die geeignetsten Laugungseigenschaften zeigt durchgeführt.

Säuren		Salze		Kombination aus Salzlösung und Säure			
Säure	Konz. Säure	Salz	Konz. Salzlö- sung	Säure	Konz. Säure	Salz	Konz. Salzlö- sung
HCI	0,1 mol/L	NaCl	0,5 mol/L	HCI	0,1 mol/L	NaCl	0,5 mol/L
HCI	0,5 mol/L	NH₄CI	0,5 mol/L	HCI	0,1 mol/L	NH₄CI	0,5 mol/L
H_2SO_4	0,1 mol/L	Na ₂ SO ₄	0,5 mol/L	H ₂ SO ₄	0,1 mol/L	Na_2SO_4	0,5 mol/L
H_2SO_4	0,5 mol/L	(NH ₄) ₂ SO ₄	0,5 mol/L	H ₂ SO ₄	0,1 mol/L	(NH ₄) ₂ SO ₄	0,5 mol/L
HNO ₃	0,1 mol/L	NaNO ₃	0,5 mol/L	HNO₃	0,1 mol/L	NaNO ₃	0,5 mol/L
HNO ₃	0,5 mol/L	NH₄NO ₃	0,5 mol/L	HNO ₃	0,1 mol/L	NH ₄ NO ₃	0,5 mol/L

Tabelle 7: Verschiedene Laugungsmittel der ersten Versuchsreihe

4.3 Versuchsaufbau

Der Versuchsaufbau besteht aus einem Becherglas mit einem Rührfisch, das auf einer Heizplatte mit integriertem Magnetrührer steht. In dem Becherglas befindet sich eine pH-Elektrode, mit der der pH-Wert gemessen wird und ein Thermoelement, mit der die Temperatur gemessen und geregelt wird (siehe Abbildung 13).

Abbildung 13: Versuchsaufbau

4.4 Versuchsdurchführung

Zu Versuchsbeginn wird die pH-Elektrode mit einer Zweipunkt Kalibration kalibriert. Die wässrige Laugungsmittellösung wird in einem 100 ml Messkolben angesetzt (siehe Tabelle 7 im Abschnitt 3.2). Die Lösung wird in ein hohes 200 ml Becherglas überführt und auf 30 °C mit einer Heizplatte erwärmt. Der Rührfisch im Becherglas wird auf 300 U/min eingestellt. Die kalibrierte pH-Elektrode und das Thermoelement werden in die Lösung eingetaucht. Sobald die Lösung eine Temperatur von 30 °C erreicht hat, werden 20 g des zu laugenden Materials hinzugegeben (siehe Abbildung 14), pH-Wert und Temperatur werden notiert. Der pH-Wert verändert sich bei Materialzugabe nur minimal, die Temperatur stieg bei Zugabe des Materials immer um ca. 2 °C an (exotherm).

Es wird mit einem Verhältnis von 100 ml Laugungsmittel und 20 g Feststoff, also 5 (I) zu 1 (s) gelaugt. Nach 60 Minuten Laugungszeit wird die erste Probe von 35 ml mit einer Spritze entnommen und mit Hilfe eines feinen Filters filtriert. Die Temperatur und der pH-Wert werden notiert. Es dauert ca. 1,5 Stunden bis ungefähr 20 ml Flüssigkeit im Probenröhrchen filtriert sind (siehe Abbildung 14). Im Gegensatz zu allen anderen Versuchen konnte man bei den Versuchen mit H₂SO₄, als Laugungsmittel, eine optische Verfärbung (gelblich) der filtrierten Lösung erkennen. Vermutlich sind dort Eisenionen in Lösung gegangen. Nach 120 Minuten wird die nächste Probe von 35 ml mit der Spritze entnommen und filtriert, wieder werden der pH-Wert und die Temperatur notiert. Der im Becherglas verbliebene Rest wird abgenutscht. Um eine Volumenbilanz der Versuchsreihe zu erstellen (siehe Anhang), wird die filtrierte Flüssigkeitsmenge gemessen und notiert. Anschließend werden alle festen Überreste der Probe, die sich noch im Becherglas und an dem Versuchsaufbau befinden mit entionisiertem Wasser ausgespült und abgenutscht. Alle Filter kommen in eine Metallschale und für 13 Stunden bei 105 °C in den Trockenschrank. Die leeren Filter werden vor dem Versuchsbeginn und nach der Trocknung gewogen, um eine Massenbilanz der Versuchsreihe zu erstellen (siehe Anhang). Alle Geräte werden mit entionisiertem Wasser gereinigt.

Um eine thermodynamische und kinetische Interpretation der Versuchsergebnisse zu gewährleisten, wird pro Versuch immer nur das Laugungsmittel verändert. Laugungszeit (120 Minuten), Laugungsmittelmenge (100 ml), Temperatur (30 °C), Rührer (Rührfisch), Rüherdrehzahl (300 U/min), Druck (Atmosphärendruck ca. 101,325 kPa), Korngröße (Material wird nicht vorbehandelt) und Probenmenge (20 g) blieben jeweils konstant.

Um eine kinetische Versuchsbetrachtung zu erstellen, wird nach der Auswertung der Analyseergebnisse eine weitere Versuchsreihe mit dem Laugungsmittel, dass die geeignetsten Laugungseigenschaften zeigt, durchgeführt. Das Verhältnis von Laugungsmittel und Feststoff bleibt hierbei gleich. Die Mengen werden allerdings auf 300 ml Laugungsmittel und 60 g Feststoff erhöht, da bei dieser Versuchsreihe jeweils bei Minute 0; 2,5; 5; 10; 20 und 60 eine Probe von 35 ml entnommen wird, um bei der Versuchsauswertung einen genaueren Kurvenverlauf zu erhalten. Außerdem wurden drei identische Versuche durchgeführt um eventuell zufällig auftretende Effekte auszuschließen und die Reproduzierbarkeit sicherzustellen. Ansonsten bleibt die Versuchsanordnung unverändert.

Abbildung 14: Links: Laugung des IAT, rechts: Gelaugtes Material im Filter

5 Versuchsauswertung: Metallkonzentration der zu laugenden Tonfraktion

Vor Planungsbeginn wurden 26 Tonfraktionen aus Madagaskar auf ihre Metallkonzentration in Bezug auf Seltene Erdelemente mit der ICP-MS Methode im Chemielabor IML Aachen von Herrn Stoltz analysiert (siehe Anhang). Zwei Tonfraktionen (Probennummer LOK 45 und LOK 18) mit einer, im Vergleich zu allen anderen Fraktionen, relativ hohen Metallkonzentration an SEE wurden für die Laugungsversuche genutzt (siehe Abbildung 15). Geringe Nachweisgrenzen im Material sollen hierbei nicht unterschritten werden. gelaugten Für die Laugungsversuche mit verschiedenen Laugungsmitteln, wurde Material der Probe LOK 45 verwendet. Für die Laugungsversuche der kinetischen Untersuchung wurde Material der Probe LOK 18 (Konzentrationen siehe Anhang) verwendet.

Abbildung 15: SEE Metallkonzentration der zu laugenden Tonfraktion (LOK 45)

Wegen zu geringer Nachweisgrenzen, beschränkten sich die chemische Analysen des gelaugten Materials auf die Seltenen Erdelemente La, Ce, Nd und Y. Diese SEE haben die höchsten Konzentrationen im Vergleich zu allen anderen SEE in dieser Tonfraktion (siehe rot markierte Werte in Abbildung 15). Außerdem werden die Fremdmetalle mit dem höchsten Konzentrationsgehalt AI, Fe, Si, Ti und Mg analysiert (siehe Tabelle 8). Diese Konzentrationswerte dienen der Selektivitätsberechnung.

Tabelle 8: Konzentration	der Fremdmetallverbindungen	in Tonfraktion LOK 45
	J	

Probenbezeichnung	X(SiO ₂)	X(TiO ₂)	$X(AI_2O_3)$	X(Fe ₂ O ₃)	X(MgO)
LOK 45	48,70 %	1,90 %	37,60 %	15,60 %	0,40 %

5.1 Auswertung der Laugungsversuche

Für die erste Versuchsreihe der Laugung des IAT, wurden die üblichen Standard Laugungsmittel für Seltene Erdelement haltige Erze Salzsäure, Salpetersäure und Schwefelsäure eingesetzt. Außerdem wurden Salzlösungen mit Natriumchlorid, Ammoniumchlorid. Ammoniumsulfat, Natriumsulfat, Natriumnitrat und Ammoniumnitrat verwendet. Des Weiteren wurde eine Kombination aus einer Säure und einer Salzlösung eingesetzt. Um eine kinetische Versuchsbetrachtung zu erstellen, wurde eine weitere Versuchsreihe mit einer Kombination aus H₂SO₄ und (NH₄)₂SO₄ gelaugt, da diese Laugungsmittelkombination die geeignetsten Laugungseigenschaften aufwies. Anhand der Berechnungen für Metallausbeuten und Selektivitätswerte (siehe Anhang), werden im Folgenden die Ergebnisse in Diagrammform visualisiert und beschrieben. Zur besseren Übersicht wird Tabelle 7 aus Kapitel 3 (hier Tabelle 9) mit den Laugungsmitteln der ersten Versuchsreihe im Folgenden nochmals aufgeführt.

Sä	uren	Salz	ze	Kombination aus Salz und Säure							
Säure	Konz. Säure	Salz	Konz. Salzlö- sung	Säure Konz. Säure		Salz	Konz. Salzlö- sung				
HCI	0,1 mol/L	NaCl	0,5 mol/L	HCI 0,1 mol/L		NaCl	0,5 mol/L				
HCI	0,5 mol/L	NH₄CI	0,5 mol/L	HCI	0,1 mol/L	NH₄CI	0,5 mol/L				
H_2SO_4	0,1 mol/L	Na_2SO_4	0,5 mol/L	H ₂ SO ₄	0,1 mol/L	Na ₂ SO ₄	0,5 mol/L				
H_2SO_4	0,5 mol/L	(NH ₄) ₂ SO ₄	0,5 mol/L	H ₂ SO ₄	0,1 mol/L	(NH ₄) ₂ SO ₄	0,5 mol/L				
HNO ₃	0,1 mol/L	NaNO ₃	0,5 mol/L	HNO₃	0,1 mol/L	NaNO ₃	0,5 mol/L				
HNO ₃	0,5 mol/L	NH ₄ NO ₃	0,5 mol/L	HNO ₃	0,1 mol/L	NH ₄ NO ₃	0,5 mol/L				

Tabelle 9: Verschiedene Laugungsmittel der ersten Versuchsreihe

Im Folgenden werden Ergebnisse der Metallausbeuten und Selektivitäten anhand von Beispielrechnungen erläutert. Hierbei sind folgende Werte aus den Analyseproben bekannt (siehe Tabelle 10). Außerdem ist das Volumen der Lösung mit 100 ml und die Masse des Feststoffes (Konzentrat) mit 20 g bekannt (Werte siehe Anhang: Ausgangsanalysen und Metallausbeuten der ersten Versuchsreihe).

Tabelle 10: Werte für eine Beispielrechnung der Metallausbeute und Selektivität

Lösungs	sanalyse	Feststoffanalyse					
c(AI)	c(La)	$X(AI_2O_3)$	c(La)				
in mg/l	in mg/l	in %	in ppm				
83,0	13,6	37,6	175				

Metallausbeute:

Im ersten Schritt wird die Metallausbeute berechnet, dazu lautet die Formel:

$$R = \frac{m(Metall)_{Lösung}}{m(Metall)_{Konzentrat}}$$
R: Metallausbeute
$$m(Metall)_{Lösung}$$
: Masse der Metallionen in der Lösung

m(Metall)_{Konzentrat}: Masse der Metallionen im Ausgangskonzentrat

Die Metallkonzentration der Ionen in Lösung können anhand folgender Gleichungen berechnet werden:

$m(Metall)_{Lösung} = c(Metall) * V_{Lösung}$	4.2
m(Metall) _{Lösung} : Masse der Metallionen in der Lösung	

c(Metall): Konzentration der Metallionen in der Lösung

V_{Lösung}: Volumen der Lösung

Ist das Konzentrat ein Feststoff, so wird die Formel 4.3 angewendet.

m(Feststoff): Masse des Feststoffes

X(Metall): Verhältnis der Metallionen zur Gesamtkonzentration

Wenn nun die Formel 4.2 und 4.3 in Formel 4.1 zusammengeführt werden und die Werte aus Tabelle 10 in diese Gleichung für das gewünschte Metall La eingesetzt werden, erhält man folgendes Ergebnis:

$$R = \frac{c(\text{Metall}) * V_{\text{Lösung}}}{m(\text{Feststoff}) * X(\text{Metall})} = \frac{\frac{13.6 \frac{\text{mg}}{\text{L}}}{1000} * 0.1\text{L}}{20g * \frac{175 \text{ ppm}}{1000000}} = 0.389 = 39\%$$
4.4

Für das Fremdmetall Aluminium wird zuerst der prozentuale Anteil eines Al⁺ berechnet, da nur der prozentuale Anteil von Al₂O₃ bekannt ist:

$$X(Al^{+}) = X(Al_2O_3)(Feststoff) /$$
(2 * Atommasse (Al) + 3 * Atommasse (O)) * 2 * Atommasse (Al) 4.5

Wenn nun Werte eingesetzt werden, folgt daraus:

$$X(Al^+) = 37,6 \% / (2 * 26,981538 u + 3 * 15,9994 u) * 2 * 26,981538 u = 4.6$$

19,9 %

Das Ergebnis aus Formel 4.6 wird nun zusammen mit c(AI) aus Tabelle 10 in Formel 4.4 eingesetzt:

$$R = \frac{c(Metall) * V_{L\ddot{o}sung}}{m(Feststoff) * X(Metall)} = \frac{\frac{83 \frac{mg}{L}}{1000} * 0.1L}{20g * \frac{19.9}{100}} = 0.00209 = 0.209\%$$
4.7

Selektivität:

Die Selektivität wird nach Formel 4.8 berechnet. Sie beschreibt das Verhältnis des zu gewinnenden Metalls zum Fremdmetall bzw. der Verunreinigung.

$$S = \frac{R(Metall)}{R(Fremdmetall)}$$
4.8

S: Selektivität

R(Metall): Metallausbeute des gewünschten Metalls

R(Fremdmetall): Metallausbeute des Fremdmetalls

Durch Einsetzen der Ergebnisse aus Formel 4.4 und 4.7 in Formel 4.8 ergibt sich:

$$S = \frac{39\%}{0,209\%} = 186$$

5.1.1 Laugungsversuche mit verschiedenen Laugungsmitteln

In den folgenden Diagrammen wird die Metallausbeute oder die Selektivität gegen die Zeit aufgetragen. An der oberen vertikalen Achse befindet sich das Laugungsmittel. Dabei wurde aus Übersichtlichkeitsgründen die Konzentration in Molarität M, was mol/L entspricht angegeben.

Metallausbeute:

Im Vergleich der Metallausbeuten aller Versuche, erzielen die "Sulfate" (...SO₄) (siehe Abbildung 16) die höchsten Werte (andere Metallausbeuten siehe Anhang). Die Werte steigen von 60 Minuten zu 120 Minuten Laugungszeit nur um einen geringen Wert. Dieser Effekt wird in der nachfolgenden kinetischen Betrachtung noch genauer sichtbar. Für die Wirtschaftlichkeit des Laugungsprozesses ist dies ein wichtiger Faktor, denn so kann die Laugungszeit gering gehalten werden, dadurch steigt die Wirtschaftlichkeit des Prozesses.

Abbildung 16: Vergleich der Metallausbeute bei verschiedenen LM "Sulfate" (...SO₄)

Die Metallausbeute ist von der Laugungsmittelkonzentration abhäning, dies wird in Abbildung 17 sichtbar. In dieser werden die Versuchsreihen mit Säuren verschiedener Konzentration (0,1 M und 0,5 M) dargestellt. In diesem Diagramm ist auch gut zu sehen das H₂SO₄ die höchste Ce-Metallausbeute erzielt. Im Vergleich von den Säuren aus Abbildung 17 zu den Salzlösungen aus Abbildung 18 ist zu erkennen, dass die Amoniumlösungen ähnliche Werte wie die Säuren bei gleicher Konzentration erzielen können. Wird die Metallausbeute der Natriumsalze in Abbildung 18 verglichen, ist zu erkennen das Na₂SO₄ deutlich höhere Werte erziehlt. Dies könnte damit zusammenhängen, dass hier die Anzahl der Natriumionen verdoppelt ist.

Abbildung 17: Vergleich der Metallausbeute bei verschiedenen LM (Säuren)

Abbildung 18: Vergleich der Metallausbeute bei verschiedenen LM (Salzlösungen)

Abbildung 19: Vergleich der Metallausbeute bei verschiedenen LM (Kombination)

Der selbst entwickelte Ansatz, eine Kombination aus einer Salzlösung mit einer Säure als Laugungsmittel (siehe Abbildung 19) zu benutzen, zeigt sich als erfolgreich. Die Werte liegen generell etwas höher als bei den Versuchen in denen nur die jeweilige Salzlösung (siehe Abbildung 18) eingesetzt wurde.

Selektivität:

Abbildung 20 ist ein Vergleich der Selektivitäten von verschiedenen Laugungsmitteln am Beispiel Neodym. Ein ähnliches Verhalten wurde für die anderen SEE beobachtet, weswegen diese hier nicht explizit aufgeführt wurden und dem Anhang zu entnehmen sind. Zu sehen ist hierbei, dass die Selektivitäten über die Laugungszeit relativ konstant bleiben bzw. bei den Fremdmetallen Fe und Si über die Zeit abnehmen. Dieser Effekt wird in der kinetischen Untersuchung noch deutlicher sichtbar. Aus diesem Grund scheint es wirtschaftlicher zu sein, die Laugungszeit relativ gering zu halten, um möglichst hohe Selektivitätswerte zu erzielen. Außerdem ist zu sehen, dass die Salzlösungen die höchsten Selektivitätswerte erzielen. Die Säuren und die Kombination aus Salzlösung und Säure schneiden im Vergleich dazu ähnlich ab.

Abbildung 20: Vergleich der Selektivität am Bsp. Nd, mit verschiedenen LM "Nitrate" (...NO₃)

Durch den Vergleich der Diagramme in Abbildung 20 und Abbildung 21 ist gut zu erkennen, dass die Salzlösungen konstant hohe Laugungsselektivitäten liefern. Diese sind die höchsten in der gesamten Versuchsreihe.

Abbildung 21: Vergleich der Selektivität am Bsp. Nd, mit verschiedenen LM (Salzlösungen)

5.1.2 Kinetische Untersuchung der Laugungsversuche

Um bei der Versuchsauswertung einen genaueren Kurvenverlauf zu erhalten, wurden anders als bei den vorhergegangen Laugungsversuchen, die Probenentnahmerate am Anfang des Versuchs gesteigert. Es wurde mit einer Kombination aus H_2SO_4 mit der Konzentration 0,1 mol/L und $(NH_4)_2SO_4$ mit der Konzentration 0,5 mol/L gelaugt. Außerdem wurden drei identische Versuche durchgeführt um eventuell zufällig auftretende Effekte auszuschließen und die Reproduzierbarkeit sicherzustellen.

Metallausbeute:

Im folgenden Diagramm (siehe Abbildung 22) sind die Werte der Metallausbeuten gegen die Zeit aufgetragen. Es wurden polynomische Trendlinien hinzugefügt, um eine Tendenz einer möglichen Entwicklung deutlich zu machen.

Abbildung 22: Metallausbeute der kinetischen Untersuchung

In Abbildung 22 ist zu sehen, dass der Laugungsprozess sehr schnell verläuft. Es ist zu erkennen, dass die Metallausbeute sich über die Zeit kaum verändert, nahezu zeitunabhängig ist. Dies ist eine Folge davon, dass die SEE adsorbiert an dem IAT vorliegen.

Selektivität:

Im folgenden Diagramm (siehe Abbildung 23), sind die Werte der Selektivitäten von allen drei Laugungsversuchen zur kinetischen Untersuchung gegen die Zeit aufgetragen. Alle Selektivitäten der anderen untersuchten SEE haben einen sehr ähnlichen Kurvenverlauf wie Nd. Da sich lediglich der Wert der Selektivität unterscheidet, werden diese nur im Anhang aufgeführt. Es wurde eine exponentielle Trendlinie hinzugefügt, um einen möglichen Kurvenverlauf besser absehen zu können.

Abbildung 23: Selektivität von Nd in der kinetischen Untersuchung

In Abbildung 23 ist zusehen, dass die Selektivität bei einigen Fremdmetallen stagnieren, doch bei Eisen und Silicium pro Zeiteinheit stark absinkt. Für einen möglichen Verfahrensablauf zur Laugung der IAT kann man aus dem Auswertungsergebnis schließen, dass die Laugungszeit unter diesen Bedingungen möglichst kurz gehalten werden sollte, damit eine möglichst hoher Selektivitätswert erzielt wird. Der schnelle Laugungsprozess der IAT, gleichbleibende Metallausbeute und hohe Anfangsselektivität sind wirtschaftlich interessante Effekte. Denn für die Wirtschaftlichkeit eines Prozesses ist die Zeit ein sehr wichtiger Faktor.

Ermittlung des geschwindigkeitsbestimmenden Schrittes der Laugungsreaktion:

Der geschwindigkeitsbestimmende Schritt der Laugungsreaktion kann anhand des mathematischen Proportionalitätszusammenhangs zwischen Laugungszeit und Metallausbeute über die genannten Formeln in Kapitel 3 ermittelt werden. Da die Laugungsreaktion im Falle der Laugung eines IAT sehr schnell verläuft, ist eine mathematische Bestimmung nicht möglich.

5.2 Fehlerbetrachtung

Die Genauigkeit von Auswertungsergebnissen wird von Durchführungs- und/oder Messfehlern negativ beeinflusst. Durch Summierung kleiner Fehler kann es zu Ergebnissen, wie Metallausbeuten über 100 % kommen.

Mögliche Durchführungsfehler können auftreten bei:

- Herstellung der Laugungsmittellösung
- Fehlerhafte Zweipunkt Kalibration der pH-Elektrode
- Massen- und Volumenverluste

Mögliche Messfehler können auftreten bei:

- Wiegevorgang
- Messung des Volumens bei der Herstellung von Laugungsmittellösungen
- Messung der Laugungszeit
- Messfehler der pH-Elektrode
- Messfehler des Thermoelements
- Analyseergebnisse des Labors

Im Folgenden wird ein Fehler für auswertungsrelevante Werte nachvollziehbar aufgeführt (siehe Tabelle 11).

Tabelle 11:	Auswertungsrelevante	Fehler
-------------	----------------------	--------

Durchführungs- oder Messfehler	Bemerkung	Fehler in %	Einfluss des Fehlers auf die jeweilige Variabel
Messung des Volumens von Laugungsmittellösungen	Fehler bei der Volumenmessung des Messkolbens (± 0,1 ml)	0,2	V _{Lösung}
Wiegen	Fehlerwert der Laborwaage (± 0,001 g)	0,0005	m(Feststoff)
Analyseergebnisse des Labors	Angabe des chem. Labors des IME	5	c(Metall) und X(Metall)

Fehlerrechnung:

Im Folgenden wird der Maximalfehler der Metallausbeute R berechnet. Denn die Standartabweichung ist nicht bekannt und der Messwert wurde nur einmal gemessen. Dabei werden die Werte Tabelle 12 und die Formel 4.10 betrachtet (siehe auch Beispielrechnung für Metallausbeute und Selektivität im Kapitel 4.1) (Werte sind dem Anhang zu entnehmen: Ausgangsanalysen und Metallausbeuten der ersten Versuchsreihe).

Tabelle 12: Werte für eine Beispielrechnung der Fehlerrechnung

Lösung	sanalyse			Feststoffanalyse					
c(Al)	c(La)	Volumen der Lösung	Masse des Feststoffes	X(Al ₂ O ₃) X(Al ⁺) (siehe Formel 4.6) c(
83,0 mg/l	13,6 mg/l	100 ml	20 g	37,6 %	19,9 %	175 ppm			

 $R = \frac{c(Metall) * V_{L\"osung}}{m(Feststoff) * X(Metall)}$

R: Metallausbeute

c(Metall): Konzentration der Metallionen in der Lösung

V_{Lösung}: Volumen der Lösung

m(Feststoff): Masse des Feststoffes

X(Metall): Verhältnis der Metallionen zur Gesamtkonzentration

Der maximale Fehler ergibt sich aus dem totalen Differential von der Metallausbeute R. Es werden die partiellen Ableitungen nach allen Variablen gebildet, diese werden mit den entsprechenden Fehlern der Variabeln multipliziert und die Beträge aufaddiert (siehe Formel 4.11).[15]

$$F_{R} = \left| \frac{\partial R}{\partial c} * F_{c} * c \right| + \left| \frac{\partial R}{\partial V} * F_{V} * V \right| + \left| \frac{\partial R}{\partial m} * F_{m} * m \right| + \left| \frac{\partial R}{\partial X} * F_{X} * X \right|$$

$$4.11$$

R: Metallausbeute

F: Fehler in %

c; V; m ; X: Kürzel der Variablen

37

4.10

Formel 4.10 wird nun nach allen Variablen partiell abgeleitet (siehe Tabelle 13).

∂R ∂c	$\frac{\partial R}{\partial V}$	$\frac{\partial R}{\partial m}$	$\frac{\partial \mathbf{R}}{\partial \mathbf{X}}$
$\frac{V}{m * X}$	$\frac{c}{m * X}$	$-\frac{c*V}{m^2*X}$	$-\frac{c * V}{m * X^2}$

Tabelle 13: Partielle Ableitungen von Ausdruck 4.10

Nun werden die Ableitungen aus Tabelle 13 und der jeweilige Fehler aus Tabelle 11 in Formel 4.11 eingesetzt.

$$F_{R} = \left| \frac{V}{m * X} * 5\% * c \right| + \left| \frac{c}{m * X} * 0.2\% * V \right| +$$

$$\left| - \frac{c * V}{m^{2} * X} * 0.0005\% * m \right| + \left| - \frac{c * V}{m * X^{2}} * 5\% * X \right|$$
4.12

Nach einer Umformung, ergibt sich:

$$F_{R} = \left| \frac{c * V}{m * X} \right| * (|5\%| + |0,2\%| + |-0,0005\%| + |-5\%|)$$
4.13

Nach Einsetzen der Werte aus Tabelle 12 in Ausdruck 4.13, ergibt sich für die Metallausbeute von Lanthan (hier 39 %) ein Fehler von 6,3 %:

$$F_{R} = \left| \frac{\frac{13,6 \frac{mg}{L}}{1000} * 0,1L}{20g * \frac{175}{1000000}} \right| * (|5\%| + |0,2\%| + |-0,0005\%| + |-5\%|) = 6,3\%$$
4.14

Nach Einsetzen der Werte aus Tabelle 12 in Ausdruck 4.13, ergibt sich für die Metallausbeute von Aluminium (hier 0,209 %) ein Fehler von 0,04 %:

$$F_{R} = \left| \frac{\frac{83 \frac{mg}{L}}{1000} * 0.1L}{20g * \frac{19.9}{100}} \right| * (|5\%| + |0.2\%| + |-0.0005\%| + |-5\%|) = 0.04\%$$
4.15

Anhand von Formel 4.14 und Formel 4.15 ist zu erkennen, dass der Fehler der Metallausbeute R vom Wert R abhängt. Für kleine Werte für R ist der Fehler klein, für größere Werte wird der Fehler immer größer. Für eine Metallausbeute von 100 % kann somit von einem Fehler von ca. 16,2 % ausgegangen werden.

6 Zusammenfassung und Ausblick

In Anbetracht an die aktuelle (Stand 2013) Exportpolitik Chinas, die Seltene Erdelemente durch Ausfuhrverbote künstlich auf dem Markt verknappt, ist die Erschließung neuer Seltener Erdelementvorkommen für andere Länder immer wichtiger. In Zeiten der fortwährenden Technologisierung der Welt werden Seltene Erdelemente zunehmend gebraucht, um verschiedenste Hightech-Technologien effizienter zu machen. Intention dieser Arbeit, ist die Laugung eines Tones aus Madagaskar, mit dem Ziel der Seltenen ionenadsorbierenden Erdelementgewinnung. Der Abbau ionenadsorbierender Tone wird in Zukunft eine immer wichtigere Rolle spielen. Denn sie sind mit wenig Aufwand abzubauen und enthalten einen besonders hohen Anteil der selteneren und somit am Weltmarkt wertvolleren, schweren seltenen Erdelemente (SSEE). In dieser Arbeit wurden Laugungsmittel Laugungsfähigkeit verschiedenste auf ihre getestet. Als Laugungsmittel kommen verschiedene Säuren und Salzlösungen zum Einsatz. Außerdem wurde ein eigener Ansatz entwickelt, diese sinnvoll miteinander zu kombinieren und dann deren Laugungsresultate auszuwerten. Als Folge daraus wurde das geeignetste Laugungsmittel einer weiteren Versuchsreihe unterzogen, um eine kinetische Betrachtung der Laugungsvorgänge nachvollziehen zu können. Dabei hat sich gezeigt, dass der Laugungsprozess unter den gegebenen Versuchsbedingungen sehr schnell abläuft. Der Wert der Metallausbeute ändert sich über die Zeit nur sehr gering. Die Selektivität verhält sich bei einigen Fremdmetallen stagnierend, sinkt bei Eisen und Silicium aber pro Zeiteinheit ab. Die Folge daraus ist, dass die Laugungszeit unter den gegebenen Versuchsbedingungen möglichst kurz gehalten werden sollte, damit der Selektivitätswert nicht absinken kann. Die Laugungszeit ist für die Wirtschaftlichkeit eines möglichen Verfahrensprozesses sehr entscheidend. Ein sehr schneller Laugungsprozess, nahezu gleichbleibende Metallausbeute und hohe Anfangsselektivität sind daher wirtschaftlich interessante Effekte.

Ein kontinuierlicher Laugungsprozess ist bei diesen kinetischen Voraussetzungen gut denkbar und sollte in der Zukunft ausgearbeitet werden. Eine möglichst hohe Metallausbeute ist das primäre Ziel einer wirtschaftlichen Laugung. Der Wert der Selektivität hängt von der Metallausbeute ab, spielt aber nur eine sekundäre Rolle. Allerdings sollte dieser Wert nicht zu niedrig sein, denn dann sind viele Fremdmetallionen in Lösung vorhanden und beeinflussten deren Weiterverarbeitung negativ. Aus wirtschaftlicher Sicht, wäre ein Kurvenverlauf dieser beiden Größen sinnvoll, der zeigt wo das Optimum des Prozesses liegt. Cer hat wegen seiner chemischen Eigenschaften vergleichsweise niedrige Metallausbeuten erzielt. Diese könnten durch Erhöhung der Laugungsmittelkonzentration möglicherweise erhöht werden.

Aus wissenschaftlicher Sicht könnte, eine wahrscheinliche pH-Wert Abhängigkeit des Prozesses betrachtet werden. Zukünftige Arbeiten dieser Art könnten kinetische Effekte bei Laugungsversuchen an IAT noch genauer betrachten. Dies ist zum Beispiel, mit einer Vergrößerung des Versuchsmaßstabs und einer automatisierten Probenentnahme möglich.

Abkürzung	Bezeichnung
SEE	Seltene Erdelemente
IAT	Ionenadsorbierende Tone
LSEE	Leichte Seltene Erdelemente
SSEE	Schwere Seltene Erdelemente
EDTA	Ethylendiamintetraessigsäure
ICP-MS	Massenspektrometrie mit induktiv gekoppeltem Plasma

7 Abkürzungsverzeichnis & Erläuterung zu verwendeten Begriffen

8 Literaturverzeichnis

[1] Öko-Institut e.V.

Autor: Dr. Doris Schüler Titel: Seltene Erden - Daten & Fakten Internetadresse: http://www.oeko.de/fileadmin/pdfs/oekodoc/1110/2011-001-de.pdf Stand: 27.03.2014

[2] U.S. Geological Survey, Mineral Commodity Summaries, February 2014

Internetadresse: http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2014-raree.pdf Stand: 27.03.2014

[3] Feil M., Rüttinger L.

Institution: Umweltbundesamt Rohstoffkonflikte nachhaltig vermeiden: Risikoreiche Zukunftsrohstoffe? Fallstudie und Szenarien zu China und Seltene Erden. (Teilbericht 3.4) 26/2011 Internetadresse: http://www.uba.de/uba-info-medien/4103.html Stand 27.03.2014

[4] Zhang J., Edwards C.

Mineral decomposition and leachingprocesses for treating rare earth ore concentrates Canadian Metallurgical Quarterly 2013 Vol. 52 S. 243-248

[5] Spedding F.

Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, 1978

[6] SEE im PSE

Institution: IG Metall Internetadresse: http://www.engineering-igmetall.de/sites/default/files/imagecache/ weltretten_thema_content_image_544/PSE.jpg Stand: 27.03.2014

[7] Gupta C., Krishnamurthy N.

Extractive Metallurgy of Rare Earth, CRC Press Boca Raton, 2005, ISBN: 0-203-41302-4

[8] Mineralienatlas

Verantwortlicher: Stefan Schorn Internetadresse: http://www.mineralienatlas.de/lexikon/index.php/Mineralienportrait/ Seltene%20Erden/Lagerst%E4tten%20und%20Vorkommen; Stand: 27.03.2014

[9] Moldoveanu G., Papangelakis V.

Leaching of lanthanides from various weathered elution deposited ores Canadian Metallurgical Quarterly 2013 Vol. 52 S.257-264

[10] Coppin F., Berger G., Bauer A., Castet S., Loubet M.

Sorption of lanthanides on smectite and kaolinite Chemical Geology 182, 2002, S.57-68

[11] Burkin, A.

The chemistry of hydrometallurgical processes, E. & F. N. Spon, LTD. London, 2001, ISBN: 9-781-86094184-9

[12] Mortimer C., Müller, U.

Chemie. Das Basiswissen der Chemie, Thieme Verlag, 2010, ISBN: 3-134-84310-2

[13] Atkins P, Paula J.

Atkins' physical chemistry, Oxford Univ. Press Oxford, 2002, 7. ed. ISBN: 0-19-879285-9

[14] Levenspiel O.

Chemical reaction engineering, Wiley New York, 1972, 2. ed., ISBN: 0-471-53019-0

[15] Papula L.

Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler Vieweg+Teubner Verlag, 2013, ISBN-10: 3-834-80757-5

9 Anhang

Konzentrationen und Gehalte der SEE und Fremdmetalle der verwendeten Tonfraktionen (analysiert am IME)

Probenbe- zeichnung		Fremd	metall in %				SEE in ppm		Fremdmetallion in %					
	SiO2 TiO2 Al2O3 Fe2O3				MgO	La	Ce	Nd	Y	Si+	Ti+	Al+	Fe+	Mg+
LOK 18	46,3	1,0	25,9	10,3	0,9	268,0	288,0	251,0	115,0	21,6	0,6	13,7	7,2	0,5
IAT 45	48,7	1,9	37,6	15,6	0,4	175,0	440,0	144,0	54,0	22,8	1,1	19,9	10,9	0,2

Probe	La	Ce	Pr	Nd	Sm	Eu	Gd 157	Tb	Dy	Y	Ho	Er	Tm	Yb173	Lu	Σ SEE	Σ LSEE	Σ SSEE
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LOK 16	54	114	13	46	9	2	8	1	6	36	1	4	1	4	1	299	238	61
LOK 18	287	<u>311</u>	65	278	44	8	36	5	26	157	5	14	2	<u>11</u>	2	1.250	992	258
LOK 35	54	117	11	41	7	2	6	1	6	27	1	4	1	4	1	281	232	49
LOK 40	157	210	32	115	19	2	16	3	13	61	2	7	1	6	1	645	536	109
LOK 45	<u>211</u>	<u>469</u>	<u>41</u>	<u>150</u>	<u>23</u>	<u>2</u>	<u>17</u>	<u>3</u>	<u>13</u>	<u>70</u>	<u>2</u>	7	1	<u>7</u>	<u>1</u>	<u>1.016</u>	<u>896</u>	<u>120</u>
LOK 11	24	584	5	17	4	0	5	1	6	53	2	5	1	6	1	713	633	80
LOK 12	44	243	10	38	6	1	4	1	3	22	1	2	0	3	0	379	343	37
LOK 13	110	243	23	94	14	3	11	2	9	64	2	5	1	4	1	586	486	99
LOK 14	176	255	40	162	30	6	27	4	22	133	4	12	2	10	1	884	668	215
Lok 17	91	148	21	87	14	3	12	2	10	53	2	5	1	5	1	454	364	90
LOK 24	113	205	24	87	15	2	12	2	9	52	2	6	1	6	1	536	446	90
LOK 43	28	103	5	18	4	1	4	1	5	30	1	4	1	4	1	209	159	51
LOK 15	53	162	11	41	7	1	6	1	5	34	1	4	1	4	1	332	276	55
LOK 19	7	127	2	6	1	0	2	0	2	10	0	1	0	2	0	160	143	17
LOK 21	78	549	16	55	10	1	10	2	10	57	2	7	1	7	1	806	709	97
LOK 29a	50	85	10	35	5	1	3	0	2	10	0	1	0	1	0	205	186	18
LOK 29b	81	188	14	47	7	2	6	1	4	18	1	2	0	2	0	373	339	34
LOK 31a	243	246	51	187	33	9	27	4	19	85	3	9	1	7	1	924	768	156
LOK 31b	158	293	32	120	20	5	16	2	11	53	2	6	1	5	1	725	627	98
LOK 33a	47	194	7	25	4	1	4	1	4	23	1	3	0	3	1	318	278	40
LOK 33b	80	321	11	38	6	1	6	1	5	26	1	3	0	3	1	503	458	46
LOK 33c	63	168	14	49	7	1	5	1	4	23	1	3	1	4	1	344	302	42
LOK 34a	71	168	14	48	6	1	4	1	3	19	1	2	0	3	0	342	309	34
LOK 34b	107	189	22	81	11	2	7	1	5	27	1	3	1	3	1	462	413	49
LOK 42	224	505	47	159	28	3	21	3	16	74	3	9	1	8	1	1.102	966	136
LOK 44	11	164	2	9	3	1	3	1	5	26	1	4	1	5	1	235	190	45

Konzentrationen der SEE im Feststoff, Für die Laugungsversuche mit verschiedenen Laugungsmitteln wurde Material der Probe LOK 45 verwendet. Für die Laugungsversuche der kinetischen Untersuchung wurde Material der Probe LOK 18 verwendet (analysiert am IML)

Durk	Ti	AI	Fe	Mg	Si	Ce	La	Nd	Y											Zeit in Min.
Probe	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Ce	La	Nd	Y	AI	Fe	Mg	Ti	Si	LM	
IAT1-1	1,0	83,0	6,6	31,9	28,7	7,7	13,6	8,8	3,6	9%	39%	31%	33%	0,209%	0,030%	7,149%	0,045%	0,063%	HCI 0,1 M	60,0
IAT1-2	1,0	100,0	10,2	33,7	36,4	8,8	15,6	9,9	4,1	10%	45%	34%	38%	0,251%	0,047%	7,552%	0,045%	0,080%	HCI 0,1 M	120,0
IAT2-1	1,0	223,0	87,0	27,2	55,0	18,5	29,5	19,3	7,6	21%	84%	67%	70%	0,560%	0,399%	6,095%	0,045%	0,121%	HCI 0,5 M	60,0
IAT2-2	1,0	275,0	144,0	28,2	79,0	20,4	31,4	20,8	8,1	23%	90%	72%	75%	0,691%	0,660%	6,319%	0,045%	0,174%	HCI 0,5 M	120,0
IAT3-1	1,0	223,0	142,0	26,3	62,0	23,8	28,4	19,4	7,2	27%	81%	67%	67%	0,560%	0,651%	5,894%	0,045%	0,136%	H2SO4 0,1 M	60,0
IAT3-2	1,0	284,0	209,0	27,8	87,0	29,0	31,0	21,4	7,9	33%	89%	74%	73%	0,714%	0,958%	6,230%	0,045%	0,191%	H2SO4 0,1 M	120,0
IAT4-1	1,9	497,0	413,0	28,9	135,0	33,7	35,6	24,6	9,0	38%	102%	85%	83%	1,249%	1,893%	6,476%	0,085%	0,297%	H2SO4 0,5 M	60,0
IAT4-2	3,3	589,0	575,0	29,8	194,0	41,8	36,8	26,0	9,4	48%	105%	90%	87%	1,480%	2,635%	6,678%	0,147%	0,426%	H2SO4 0,5 M	120,0
IAT5-1	1,0	95,0	5,9	26,2	27,8	10,1	16,4	11,4	4,1	11%	47%	40%	38%	0,239%	0,027%	5,871%	0,045%	0,061%	HNO3 0,1 M	60,0
IAT5-2	1,0	114,0	9,5	27,9	35,4	11,6	18,3	12,8	4,7	13%	52%	44%	44%	0,286%	0,044%	6,252%	0,045%	0,078%	HNO3 0,1 M	120,0
IAT6-1	1,0	205,0	35,8	27,6	48,7	20,0	30,9	20,8	7,5	23%	88%	72%	69%	0,515%	0,164%	6,185%	0,045%	0,107%	HNO3 0,5 M	60,0
IAT6-2	1,0	253,0	58,0	30,0	69,0	21,5	33,2	22,4	8,2	24%	95%	78%	76%	0,636%	0,266%	6,723%	0,045%	0,152%	HNO3 0,5 M	120,0
IAT7-1	1,0	42,3	1,0	32,4	2,7	10,3	18,5	10,7	4,6	12%	53%	37%	43%	0,106%	0,005%	7,261%	0,045%	0,006%	NaCl 0,5 M	60,0
IAT7-2	1,0	43,3	1,0	33,3	2,5	10,5	18,7	10,7	4,6	12%	53%	37%	43%	0,109%	0,005%	7,462%	0,045%	0,005%	NaCl 0,5 M	120,0
IAT8-1	1,0	53,0	1,0	28,6	2,1	19,3	33,9	19,8	8,1	22%	97%	69%	75%	0,133%	0,005%	6,409%	0,045%	0,005%	NH4CI 0,5 M	60,0
IAT8-2	1,0	56,0	1,0	29,4	2,1	19,4	34,3	20,1	8,2	22%	98%	70%	76%	0,141%	0,005%	6,588%	0,045%	0,005%	NH4CI 0,5 M	120,0
IAT9-1	1,0	38,1	1,0	37,1	17,2	19,1	31,1	18,9	7,8	22%	89%	66%	72%	0,096%	0,005%	8,314%	0,045%	0,038%	Na2SO4 0,5 M	60,0
IAT9-2	1,0	52,8	1,0	34,1	8,6	19,5	32,8	20,1	8,0	22%	94%	70%	74%	0,133%	0,005%	7,642%	0,045%	0,019%	Na2SO4 0,5 M	120,0
IAT10-1	1,0	44,0	1,0	27,8	5,5	19,4	32,3	20,0	7,9	22%	92%	69%	73%	0,111%	0,005%	6,230%	0,045%	0,012%	(NH4)2SO4 0,5 M	60,0
IAT10-2	1,0	43,0	1,0	28,5	7,3	20,2	33,2	20,6	8,2	23%	95%	72%	76%	0,108%	0,005%	6,387%	0,045%	0,016%	(NH4)2SO4 0,5 M	120,0
IAT11-1	1,0	44,1	1,0	31,6	1,0	11,4	19,5	12,5	4,4	13%	56%	43%	41%	0,111%	0,005%	7,081%	0,045%	0,002%	NaNO3 0,5 M	60,0
IAT11-2	1,0	45,5	1,0	32,1	1,0	11,9	20,4	13,1	4,6	14%	58%	45%	43%	0,114%	0,005%	7,193%	0,045%	0,002%	NaNO3 0,5 M	120,0
IAT12-1	1,0	57,0	1,0	29,8	1,0	19,4	32,4	19,6	7,6	22%	93%	68%	70%	0,143%	0,005%	6,678%	0,045%	0,002%	(NH4)NO3 0,5 M	60,0
IAT12-2	1,0	56,0	1,0	29,3	1,0	20,1	33,1	20,1	7,8	23%	95%	70%	72%	0,141%	0,005%	6,566%	0,045%	0,002%	(NH4)NO3 0,5 M	120,0
IAT13-1	1,0	198,0	26,3	31,5	31,6	16,1	25,3	16,3	6,4	18%	72%	57%	59%	0,497%	0,121%	7,059%	0,045%	0,069%	HCI 0,1 M / NaCI 0,5 M	60,0
IAT13-2	1,0	221,0	39,2	31,8	38,2	16,8	26,2	17,0	6,6	19%	75%	59%	61%	0,555%	0,180%	7,126%	0,045%	0,084%	HCI 0,1 M / NaCI 0,5 M	120,0
IAT14-1	1,0	213,0	35,1	32,0	35,4	25,8	41,3	27,2	10,5	29%	118%	94%	97%	0,535%	0,161%	7,171%	0,045%	0,078%	HCI 0,1 M / NH4CI 0,5 M	60,0
IAT14-2	1,0	235,0	53,0	32,7	42,9	27,6	43,7	29,0	11,3	31%	125%	101%	105%	0,590%	0,243%	7,328%	0,045%	0,094%	HCI 0,1 M / NH4CI 0,5 M	120,0
IAT15-1	1,0	346,0	106,0	31,0	55,0	25,7	33,8	22,8	8,7	29%	97%	79%	81%	0,869%	0,486%	6,947%	0,045%	0,121%	H2SO4 0,1 M / Na2SO4 0,5 M	60,0
IAT15-2	1,0	409,0	148,0	33,3	72,0	29,7	35,4	24,2	9,1	34%	101%	84%	84%	1,028%	0,678%	7,462%	0,045%	0,158%	H2SO4 0,1 M / Na2SO4 0,5 M	120,0
IAT16-1	1,0	274,0	116,0	28,3	55,0	27,7	35,8	24,4	9,2	31%	102%	85%	85%	0,688%	0,532%	6,342%	0,045%	0,121%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	60,0
IAT16-2	1,0	325,0	170,0	29,1	72,0	30,8	36,8	25,4	9,5	35%	105%	88%	88%	0,817%	0,779%	6,521%	0,045%	0,158%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	120,0
IAT17-1	1,0	182,0	11,7	30,1	25,8	15,9	25,4	16,8	6,1	18%	73%	58%	56%	0,457%	0,054%	6,745%	0,045%	0,057%	HNO3 0,1 M / NaNO3 0,5 M	60,0
IAT17-2	1,0	207,0	17,7	29,7	33,8	16,7	26,5	17,5	6,4	19%	76%	61%	59%	0,520%	0,081%	6,656%	0,045%	0,074%	HNO3 0,1 M / NaNO3 0,5 M	120,0
IAT18-1	1,0	180,0	16,8	26,8	30,1	23,4	36,5	24,2	9,1	27%	104%	84%	84%	0,452%	0,077%	6,006%	0,045%	0,066%	HNO3 0,1 M / (NH4)NO3 0,5 M	60,0
IAT18-2	1,0	212,0	24,5	29,0	37,4	24,0	37,1	24,5	9,3	27%	106%	85%	86%	0,533%	0,112%	6,499%	0,045%	0,082%	HNO3 0,1 M / (NH4)NO3 0,5 M	120,0

. .	Ti	AI	Fe	Mg	Si	Ce	La	Nd	Y		Metalle					Fremdme- talle				
Probe	mg/l	Ce	La	Nd	Y	AI	Fe	Mg	Ti	Si	LM	Zeit in Min.								
IAT 20.1	1,00	303	14,2	24,0	20,3	30,1	50,8	43,6	22,6	52%	95%	87%	98%	1,105%	0,099%	2,314%	0,085%	0,047%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	0
IAT 20.2	1,00	308	14,4	24,4	20,9	30,5	51,2	43,4	22,7	53%	96%	86%	99%	1,123%	0,100%	2,352%	0,085%	0,048%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	2,5
IAT 20.3	1,00	316	16,8	24,5	23,7	30,2	50,7	43,3	22,5	52%	95%	86%	98%	1,153%	0,117%	2,362%	0,085%	0,055%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	5
IAT 20.4	1,00	329	19,2	24,6	26,1	30,9	51,7	43,9	22,7	54%	96%	87%	99%	1,200%	0,133%	2,372%	0,085%	0,060%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	10
IAT 20.5	1,00	342	23,0	24,9	30,1	31,3	52,6	44,8	23,2	54%	98%	89%	101%	1,247%	0,160%	2,401%	0,085%	0,070%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	20
IAT 20.6	1,00	367	31,6	25,9	38,1	32,0	54,2	46,3	23,8	56%	101%	92%	103%	1,339%	0,219%	2,497%	0,085%	0,088%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	60
IAT 20.7	1,00	316	29,4	24,9	34,6	26,5	45,0	38,3	20,0	46%	84%	76%	87%	1,153%	0,204%	2,401%	0,085%	0,080%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	Gefilterte lösung
IAT 21.1	1,00	321	15,0	26,4	21,9	32,6	54,5	46,4	23,4	57%	102%	92%	102%	1,171%	0,104%	2,545%	0,085%	0,051%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	0
IAT 21.2	1,00	343	18,9	26,5	26,1	33,5	55,9	47,8	24,2	58%	104%	95%	105%	1,251%	0,131%	2,555%	0,085%	0,060%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	2,5
IAT 21.3	1,00	351	21,5	26,5	28,6	33,0	55,0	46,9	23,9	57%	103%	93%	104%	1,280%	0,149%	2,555%	0,085%	0,066%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	5
IAT 21.4	1,00	372	25,6	27,0	32,9	32,9	54,0	46,2	23,9	57%	101%	92%	104%	1,357%	0,178%	2,603%	0,085%	0,076%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	10
IAT 21.5	1,00	376	28,3	27,3	34,4	32,5	54,9	47,1	24,0	56%	102%	94%	104%	1,372%	0,196%	2,632%	0,085%	0,079%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	20
IAT 21.6	1,00	411	41,3	27,2	49,9	32,4	54,3	46,6	24,0	56%	101%	93%	104%	1,499%	0,287%	2,622%	0,085%	0,115%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	60
IAT 21.7	1,00	330	35,2	24,9	39,4	26,4	44,2	37,7	19,7	46%	82%	75%	86%	1,204%	0,244%	2,401%	0,085%	0,091%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	Gefilterte lösung
IAT 22.1	1,00	290	15,2	23,9	21,1	28,0	47,6	40,6	21,1	49%	89%	81%	92%	1,058%	0,105%	2,304%	0,085%	0,049%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	0
IAT 22.2	1,00	387	26,9	28,3	34,0	33,1	57,1	48,9	25,4	57%	107%	97%	110%	1,412%	0,187%	2,728%	0,085%	0,079%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	2,5
IAT 22.3	1,00	394	29,7	29,1	36,0	33,1	56,5	48,5	25,5	57%	105%	97%	111%	1,437%	0,206%	2,806%	0,085%	0,083%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	5
IAT 22.4	1,00	410	36,3	29,3	40,8	34,2	58,5	50,5	26,4	59%	109%	101%	115%	1,496%	0,252%	2,825%	0,085%	0,094%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	10
IAT 22.5	1,00	424	41,3	29,0	45,8	33,9	57,3	49,3	25,7	59%	107%	98%	112%	1,547%	0,287%	2,796%	0,085%	0,106%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	20
IAT 22.6	1,00	466	62,3	29,3	62,8	34,9	59,2	51,1	27,4	61%	110%	102%	119%	1,700%	0,432%	2,825%	0,085%	0,145%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	60
IAT 22.7	1,00	396	52,7	28,8	53,5	29,6	50,3	43,3	22,9	51%	94%	86%	100%	1,444%	0,366%	2,777%	0,085%	0,124%	H2SO4 0,1 M / (NH4)2SO4 0,5 M	Gefilterte lösung

Ausgangsanalysen und Metallausbeuten der zweiten Versuchsreihe (Kinetische Untersuchung)

Selektivitätswerte erste Versuchsreihe (Ce und La)

Ce	Ce zu	Ce	Ce	Ce zu	La	La zu	La	La zu	La zu	1.14	Konz	LM	Konz	Zeit in
Al	Fe	Mg	Ti	Si	AI	Fe	Mg	Ti	Si	LIVI	NUNZ.	LIVI	NUHZ.	Min.
42	289	1	196	139	186	1285	5	871	616	Hcl	0,1 M			60,0
40	214	1	224	125	177	954	6	999	557	Hcl	0,1 M			120,0
38	53	3	471	174	150	211	14	1889	698	Hcl	0,5 M			60,0
34	35	4	520	134	130	136	14	2011	517	Hcl	0,5 M			120,0
48	42	5	606	199	145	125	14	1819	596	H2SO4	0,1 M			60,0
46	34	5	739	172	124	92	14	1985	464	H2SO4	0,1 M			120,0
31	20	6	452	129	81	54	16	1200	343	H2SO4	0,5 M			60,0
32	18	7	323	111	71	40	16	714	247	H2SO4	0,5 M			120,0
48	425	2	257	188	196	1733	8	1050	767	HN03	0,1 M			60,0
46	303	2	295	170	183	1201	8	1172	672	HN03	0,1 M			120,0
44	139	4	509	212	171	538	14	1979	825	HN03	0,5 M			60,0
38	92	4	548	161	149	357	14	2126	626	HN03	0,5 M			120,0
110	2554	2	262	1974	497	11535	7	1185	8913	NaCl	0,5 M			60,0
110	2604	2	267	2173	491	11659	7	1198	9730	NaCl	0,5 M			120,0
165	4786	3	492	4755	727	21136	15	2171	20999	NH4CI	0,5 M			60,0
157	4811	3	494	4779	696	21386	15	2197	21246	NH4CI	0,5 M			120,0
227	4736	3	487	575	928	19391	11	1992	2352	Na2SO4	0,5 M			60,0
167	4836	3	497	1173	706	20451	12	2101	4961	Na2SO4	0,5 M			120,0
199	4811	4	494	1825	835	20139	15	2069	7639	(NH4)2SO4	0,5 M			60,0
212	5009	4	515	1432	878	20700	15	2126	5916	(NH4)2SO4	0,5 M			120,0
117	2827	2	290	5898	503	12158	8	1249	25366	NaNO3	0,5 M			60,0
118	2951	2	303	6157	510	12719	8	1306	26536	NaNO3	0,5 M			120,0
154	4811	3	494	10037	646	20201	14	2075	42146	NH4NO3	0,5 M			60,0
162	4984	3	512	10399	672	20638	14	2120	43057	NH4NO3	0,5 M			120,0
37	152	3	410	264	145	600	10	1620	1041	Hcl	0,1 M	NaCl	0,5 M	60,0
34	106	3	428	228	135	417	11	1678	892	Hcl	0,1 M	NaCl	0,5 M	120,0
55	182	4	657	377	220	734	16	2645	1518	Hcl	0,1 M	NH4CI	0,5 M	60,0
53	129	4	703	333	211	514	17	2799	1325	Hcl	0,1 M	NH4CI	0,5 M	120,0
34	60	4	655	242	111	199	14	2165	799	H2SO4	0,1 M	Na2SO4	0,5 M	60,0
33	50	5	757	213	98	149	14	2267	640	H2SO4	0,1 M	Na2SO4	0,5 M	120,0
46	59	5	706	261	149	192	16	2293	847	H2SO4	0,1 M	(NH4)2SO4	0,5 M	60,0
43	45	5	785	221	129	135	16	2357	665	H2SO4	0,1 M	(NH4)2SO4	0,5 M	120,0
40	337	3	405	319	159	1354	11	1627	1281	HN03	0,1 M	NaNO3	0,5 M	60,0
36	234	3	425	256	146	933	11	1697	1020	HN03	0,1 M	NaNO3	0,5 M	120,0
59	345	4	596	402	231	1355	17	2338	1577	HN03	0,1 M	NH4NO3	0,5 M	60,0
51	243	4	611	332	199	944	16	2376	1290	HN03	0,1 M	NH4NO3	0,5 M	120,0

Selektivitätswerte erste Versuchsreihe (Nd und Y)

Nd zu	Nd zu	Nd	Nd zu	Nd zu	Y ZU	Y zu Fe	Y 711	Y zu	Y zu Si	LM	Konz	ΙM	Konz	Zeit in
AI	Fe	Mg	Ti	Si	AI	1 201 0	Mg	Ti	1 20 01	2.00	T COLLE	2.00	rtonz.	Min.
147	1010	4	685	485	160	1102	5	747	529	Hcl	0,1 M			60,0
137	735	5	771	430	151	812	5	851	475	Hcl	0,1 M			120,0
120	168	11	1502	555	126	177	12	1577	583	Hcl	0,5 M			60,0
105	109	11	1619	416	109	114	12	1681	432	Hcl	0,5 M			120,0
120	104	11	1510	495	119	102	11	1494	490	H2SO4	0,1 M			60,0
104	78	12	1666	389	103	76	12	1640	383	H2SO4	0,1 M			120,0
68	45	13	1008	288	67	44	13	983	281	H2SO4	0,5 M			60,0
61	34	14	613	212	59	33	13	591	204	H2SO4	0,5 M			120,0
166	1464	7	887	648	159	1404	6	851	622	HN03	0,1 M			60,0
155	1021	7	996	572	152	1000	7	975	560	HN03	0,1 M			120,0
140	440	12	1619	675	135	423	11	1557	649	HN03	0,5 M			60,0
122	293	12	1743	513	119	286	11	1702	501	HN03	0,5 M			120,0
350	8108	5	833	6265	401	9295	6	955	7182	NaCl	0,5 M			60,0
341	8108	5	833	6766	391	9295	6	955	7757	NaCl	0,5 M			120,0
516	15003	11	1541	14905	563	16367	12	1681	16260	NH4CI	0,5 M			60,0
496	15230	11	1564	15131	540	16569	12	1702	16461	NH4CI	0,5 M			120,0
686	14321	8	1471	1737	754	15761	9	1619	1912	Na2SO4	0,5 M			60,0
526	15230	9	1564	3695	558	16165	10	1660	3921	Na2SO4	0,5 M			120,0
628	15154	11	1557	5749	662	15963	12	1640	6055	(NH4)2SO4	0,5 M			60,0
662	15609	11	1603	4461	703	16569	12	1702	4735	(NH4)2SO4	0,5 M			120,0
392	9471	6	973	19760	368	8891	6	913	18549	NaNO3	0,5 M			60,0
398	9926	6	1020	20709	373	9295	6	955	19392	NaNO3	0,5 M			120,0
475	14851	10	1525	30984	491	15356	11	1577	32038	NH4NO3	0,5 M			60,0
496	15230	11	1564	31775	513	15761	11	1619	32881	NH4NO3	0,5 M			120,0
114	470	8	1269	815	119	492	8	1328	854	Hcl	0,1 M	NaCl	0,5 M	60,0
106	329	8	1323	704	110	340	9	1370	728	Hcl	0,1 M	NaCl	0,5 M	120,0
176	587	13	2117	1215	182	604	14	2179	1250	Hcl	0,1 M	NH4CI	0,5 M	60,0
171	415	14	2257	1069	177	431	14	2345	1110	Hcl	0,1 M	NH4CI	0,5 M	120,0
91	163	11	1775	655	93	166	12	1806	667	H2SO4	0,1 M	Na2SO4	0,5 M	60,0
82	124	11	1884	531	82	124	11	1889	533	H2SO4	0,1 M	Na2SO4	0,5 M	120,0
123	159	13	1899	701	124	160	13	1909	705	H2SO4	0,1 M	(NH4)2S O4	0,5 M	60,0
108	113	14	1977	558	108	113	13	1972	556	H2SO4	0,1 M	(NH4)2S O4	0,5 M	120,0
128	1088	9	1308	1029	124	1053	8	1266	997	HN03	0,1 M	NaNO3	0,5 M	60,0
117	749	9	1362	818	114	731	9	1328	798	HN03	0,1 M	NaNO3	0,5 M	120,0
186	1091	14	1884	1271	186	1094	14	1889	1274	HN03	0,1 M	NH4NO3	0,5 M	60,0
160	758	13	1907	1036	162	767	13	1930	1048	HN03	0,1 M	NH4NO3	0,5 M	120,0

Selektivitätswerte der zweiten Versuchsreihe (Kinetische Untersuchung)

Laugungsmittel :H $_2SO_4$ 0,1 M / (NH $_4$) $_2SO_4$ 0,5 M

Probe	Ce zu Al	Ce zu Fe	C e zu M g	Ce zu Ti	Ce zu Si	La zu Al	La zu Fe	La zu Mg	La zu Ti	La zu Si	Nd zu Al	Nd zu Fe	Nd zu Mg	Nd zu Ti	Nd zu Si	Y zu Al	Y zu Fe	Y zu Mg	Y zu Ti	Y zu Si	Zeit in Min.
IAT 20.1	47	530	23	614	1114	86	962	41	1113	2021	79	881	38	1020	1852	89	997	42	1154	2095	0
IAT 20.2	47	530	23	622	1097	85	956	41	1122	1978	77	865	37	1016	1790	88	988	42	1159	2044	2,5
IAT 20.3	45	450	22	616	958	82	811	40	1111	1728	75	740	37	1013	1575	85	839	41	1149	1787	5
IAT 20.4	45	403	23	630	890	80	724	41	1133	1600	73	656	37	1027	1450	82	741	42	1159	1637	10
IAT 20.5	44	340	23	638	781	79	615	41	1153	1411	72	559	37	1048	1283	81	632	42	1185	1451	20
IAT 20.6	42	253	22	653	631	76	461	40	1188	1149	69	421	37	1083	1048	77	472	41	1216	1176	60
IAT 21.1	48	544	22	665	1119	87	977	40	1194	2010	79	888	36	1086	1827	87	977	40	1195	2011	0
IAT 21.2	46	443	23	683	965	83	795	41	1225	1730	76	726	37	1119	1579	84	802	41	1236	1745	2,5
IAT 21.3	45	384	22	673	867	80	688	40	1205	1553	73	626	37	1097	1414	81	696	41	1221	1573	5
IAT 21.4	42	321	22	671	751	74	567	39	1183	1325	68	518	35	1081	1211	77	585	40	1221	1367	10
IAT 21.5	41	287	21	663	710	75	521	39	1203	1289	68	478	36	1102	1181	76	531	40	1226	1313	20
IAT 21.6	38	196	21	661	488	68	353	39	1190	879	62	324	35	1090	805	70	364	40	1226	905	60
IAT 22.1	46	461	21	571	997	84	842	39	1043	1822	76	767	35	950	1659	87	870	40	1078	1882	0
IAT 22.2	41	308	21	675	732	75	571	39	1251	1356	69	522	36	1144	1240	78	592	40	1297	1406	2,5
IAT 22.3	40	279	20	675	691	73	511	38	1238	1267	67	469	34	1135	1162	77	538	40	1302	1333	5
IAT 22.4	40	236	21	697	630	73	433	39	1282	1158	67	399	36	1182	1067	77	456	41	1348	1218	10
IAT 22.5	38	205	21	691	556	69	373	38	1256	1010	63	343	35	1154	928	72	390	40	1313	1056	20
IAT 22.6	36	140	21	712	418	65	255	39	1297	761	60	235	36	1196	702	70	276	42	1399	821	60

Massen- und Volumenbilanz der ersten Versuchsreihe Teil 1

	Massenbilanz						Volumenbilanz		
Versuch	Filter	Filter+Inhalt		Einwaage	Summe	Differenz	Volumen in ml	Summe	Differenz
1_1	0,948	7,580	6,632	20,004	18,609	1,395	35		
1_2	0,953	7,692	6,739				35		
1	2,010	7,248	5,238				22	92	8
2_1	0,924	6,909	5,985	20,003	18,329	1,674	35		
2_2	0,906	7,346	6,440				35		
2	0,937	6,841	5,904				23	93	7
3_1	0,931	7,486	6,555	20,007	18,692	1,315	35		
3_2	0,922	7,456	6,534				35		
3	2,054	7,657	5,603				25	95	5
4_1	0,924	6,786	5,862	20,008	18,785	1,223	35		
4_2	0,920	8,124	7,204				35		
4	2,050	7,769	5,719				24	94	6
5_1	0,922	7,119	6,197	19,998	18,588	1,410	35		
5_2	0,913	7,047	6,134				35		
5	2,047	8,304	6,257				24	94	6
6_1	0,918	7,064	6,146	19,999	18,824	1,175	35		
6_2	0,924	7,176	6,252				35		
6	2,078	8,504	6,426				28	98	2
7_1	0,912	7,397	6,485	20,007	18,528	1,479	35		
7_2	0,917	8,005	7,088				35		
7	2,045	7,000	4,955				24	94	6
8_1	0,942	7,298	6,356	20,000	18,214	1,786	35		
8_2	0,917	6,971	6,054				35		
8	2,013	7,817	5,804				23	93	7
9_1	0,932	7,518	6,586	20,000	19,005	0,995	35		
9_2	0,901	7,250	6,349				35		
9	2,120	8,190	6,070				27	97	3
10_1	0,904	6,875	5,971	20,002	18,593	1,409	35		
10_2	0,908	7,798	6,890				35		
10	2,149	7,881	5,732				23	93	7

	Massenbilanz						Volumenbilanz		
Versuch	Filter	Filter+Inhalt		Einwaage	Summe	Differenz	Volumen in ml	Summe	Differenz
11_1	0,919	7,582	6,663	20,006	18,786	1,220	35		
11_2	0,900	7,337	6,437				35		
11	2,121	7,807	5,686				25	95	5
12_1	0,932	7,390	6,458	19,999	18,544	1,455	35		
12_2	0,920	7,474	6,554				35		
12	2,099	7,631	5,532				25	95	5
13_1	0,917	7,508	6,591	20,000	18,423	1,577	35		
13_2	0,940	6,835	5,895				35		
13	2,079	8,016	5,937				26	96	4
14_1	0,909	8,003	7,094	20,009	18,764	1,245	35		
14_2	0,923	7,314	6,391				35		
14	2,112	7,391	5,279				27	97	3
15_1	0,903	7,203	6,300	19,999	18,402	1,597	35		
15_2	0,926	6,987	6,061				35		
15	2,104	8,145	6,041				24	94	6
16_1	0,914	7,303	6,389	20,003	18,936	1,067	35		
16_2	0,897	7,556	6,659				35		
16	2,096	7,984	5,888				24	94	6
17_1	0,925	6,877	5,952	19,999	18,574	1,425	35		
17_2	0,907	7,402	6,495				35		
17	2,073	8,200	6,127				25	95	5
18_1	0,899	7,209	6,310	20,005	18,404	1,601	35		
18_2	0,935	7,412	6,477				35		
18	2,096	7,713	5,617				26	96	4

Massen- und Volumenbilanz der zweiten Versuchsreihe

	Massenbilanz						Volumenbilanz		
Versuch	Filter	Filter+Inhalt		Einwaage	Summe	Differenz	Volumen in ml	Summe	Differenz
20_1	1,31	7,77	6,46	60	57,07	2,93	35		
20_2	1,32	7,73	6,41				35		
20_3	1,29	8,1	6,81				35		
20_4	1,29	7,83	6,54				35		
20_5	1,31	7,57	6,26				35		
20_6	1,31	6,7	5,39				35		
20_7	1,3	20,5	19,2				85	295	5
21_1	1,3	7,47	6,17	60	56,77	3,23	35		
21_2	1,29	7,63	6,34				35		
21_3	1,34	7,36	6,02				35		
21_4	1,28	7,83	6,55				35		
21_5	1,31	7,61	6,3				35		
21_6	1,32	8	6,68				35		
21_7	1,39	20,1	18,71				83	293	7
22_1	1,31	7,16	5,85	60	56,09	3,91	35		
22_2	1,32	7,57	6,25				35		
22_3	1,31	7,1	5,79				35		
22_4	1,31	7,16	5,85				35		
22_5	1,3	7,68	6,38				35		
22_6	1,29	7,41	6,12				35		
22_7	1,35	21,2	19,85				84	294	6