Fachbereich Bauingenieurwesen Mathematik 2 für Bauingenieure

FH AACHEN UNIVERSITY OF APPLIED SC

Prof. Dr.-Ing. P. Sparla 24. Juli 2015

Die Funktionen f, g und h, gegeben durch

$$f(x) = \frac{-1}{x+1} \quad (x \neq -1) \,, \quad g(x) = \sqrt{x} \quad (x \geq 0) \quad \text{und} \quad h(x) = -\frac{4}{3}x + \frac{7}{3} \quad (x \in \mathbb{IR}) \,,$$

schließen zusammen mit der *y*-Achse eine Fläche ein. Skizzieren Sie diese Fläche und berechnen Sie ihren Inhalt. Die notwendigen Schnittpunkte sind dabei ebenfalls zu berechnen und nicht aus der Skizze abzulesen.

Die Funktionen $f(x) = x^2 + 1$ und $g(x) = -x^2 - 1$ schließen auf dem Intervall I = [0;2] eine Fläche ein. Bestimmen Sie den Schwerpunkt dieser Fläche.

Gegeben ist folgendes Gleichungssystem:

$$2x_1 - 3x_2 - 2x_3 - 4 = 0$$
$$x_1 - 2x_3 - 6 = 0$$
$$4x_1 - 5x_2 + x_3 - 5 = 0$$

Geben Sie das Gleichungssystem in Matrizenschreibweise an und bestimmen Sie mittels Cramerscher Regel die Lösung.

Geben Sie eine (3x3)-Matrix M mit det(M) = 3 an.

Gegeben sind die Punkte A(1|0|-2), B(3|-1|2), C(0|1|-3) und $D(-1|y_D|-9)$. Bestimmen Sie y_D so, dass alle vier Punkte in einer Ebene liegen.

Die Vektoren \overrightarrow{d} und \overrightarrow{b} sind gegeben durch: $\overrightarrow{d} = \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix}$ und $\overrightarrow{b} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$.

- a) Wie groß ist der Flächeninhalt des durch \overrightarrow{d} und \overrightarrow{b} aufgespannten Parallelogramms.
- b) Zusammen mit dem Punkt P(1|0|1) definieren \overrightarrow{d} und \overrightarrow{b} eine Ebene. Bestimmen Sie eine parameterfreie Form dieser Ebene.
- c) Berechnen Sie den Schnittpunkt sowie den Schnittwinkel von E und g gegeben durch

$$E: \quad \overrightarrow{x} \cdot \left(\begin{array}{c} 4 \\ 3 \\ -3 \end{array} \right) = 1 \quad \text{und} \quad g: \quad \overrightarrow{x} = \left(\begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) + \lambda \left(\begin{array}{c} 0 \\ 1 \\ 2 \end{array} \right) \quad (\lambda \in \mathbb{IR}) \ .$$

d) Der Richtungsvektor der Geraden g aus c) spannt zusammen mit den Vektoren \overrightarrow{d} und \overrightarrow{b} einen Spat auf. Wie groß ist sein Volumen?

Gegeben ist die Funktion $f(x,y) = \frac{1}{6}x^3 - x + \frac{1}{4}xy^2$ für $(x,y) \in \mathbb{R}^2$. Bestimmen Sie alle kritischen Stellen und geben Sie an, ob es sich um Sattel-, Minimal- oder Maximalstellen handelt.

Prüfen Sie, ob die Funktion $y(x) = x(e^{x^2} + c)$ mit $c, x \in \mathbb{R}$ und $x \neq 0$ eine Lösung der Differentialgleichung $y' = \frac{y}{x} + 2x^2 e^{x^2}$ ist.

Berechnen Sie die Lösungsgesamtheit der Differentialgleichung $yy'=\mathrm{e}^{-y^2}$.

Ergebnisse der Klausur vom 24. Juli 2015

- **Aufgabe 1:** Die Fläche besitzt ein Größe von $A \approx 2,10$ [FE].
- **Aufgabe 2:** Der Schwerpunkt hat die Koordinaten S(1,29|0).
- **Aufgabe 3:** Die Lösung lautet: $\overrightarrow{x} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$
- **Aufgabe 4:** z.B.: $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- **Aufgabe 5:** Mit $y_D = -\frac{1}{2}$ liegen alle 4 Punkte in einer Ebene.
- **Aufgabe 6:** a) Der Flächeninhalt des Parallelogramms beträgt $A \approx 17,49$ [FE].
 - b) $E: \overrightarrow{x} \cdot \begin{pmatrix} 4 \\ 3 \\ -3 \end{pmatrix} = 1.$
 - c) E und g schneiden sich im Punkt S(1|-4|-3) unter einem Winkel von $\varphi=13,3^{\circ}$.
 - d) Das Volumen des Spats beträgt $V=9 \ [VE]$.
- **Aufgabe 7:** f hat Sattelstellen in $\overrightarrow{k_{1/2}}=(0,\pm 2)$ eine Minimalstelle in $\overrightarrow{k_3}=(\sqrt{2},0)$ sowie eine Maximalstelle in $\overrightarrow{k_4}=(-\sqrt{2},0)$.
- **Aufgabe 8:** y ist Lösung der Differentialgleichung.
- **Aufgabe 9:** Die Lösung der DGL lautet: $y(x) = \pm \sqrt{\ln(2x+c)} \quad \text{mit} \quad x, \, c \in \mathrm{IR} \ \, \text{so, dass} \ \, 2x+c \geq 1$

Stand: 28.02.2016