Angriffe auf SCADA/ICS

Benedikt Paffen

Gregor Bonney

Lehrgebiet Datennetze, IT-Sicherheit und IT-Forensik

Agenda

1. Einführung

- Was ist Scada?
- Gefahren

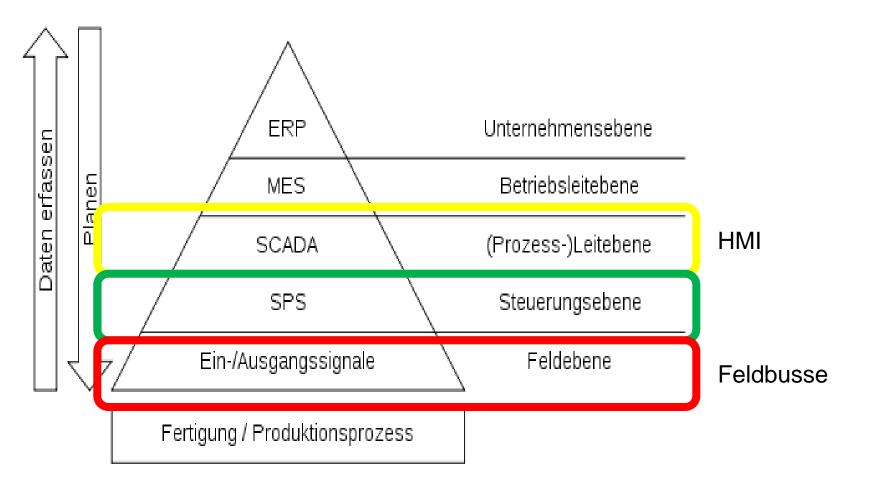
2. Angriffsmöglichkeiten

- Konventionelle Angriffe auf Scada/ICS
- Auf ICS zugeschnittene Angriffe
 - Beispiel anhand einer S7
 - Beispiel anhand einer Beckhoff CX5020

3. Gegenmaßnahmen

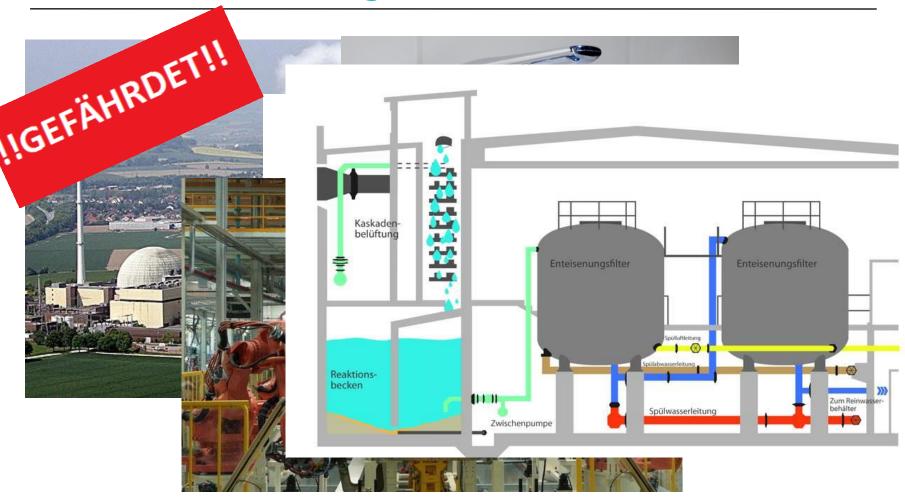
- Möglichkeiten
- Hindernisse

4. Forensische Möglichkeiten



Einführung – Was ist Scada?

- \circ Scada ist die Abkürzung für :
 - ✓ Supervisory
 - ✓ Control
 - ✓ And
 - ✓ Data
 - ✓ Acquisition
- Sammelt Daten
- Steuert Anlagen
- Besteht aus:
- Sensoren / Aktuatoren
- Speicherprogrammierbare Steuerung
- Human-Machine Interfaces
- Infrastruktur



Einführung – Was ist Scada?

Einführung - Gefahren

http://maylinee.files.wordpress.com/2009/11/atomkraftwerk_dpa.jpg http://images.zeit.de/bilder/2009/29/auto/auto-clio/auto-clio-540x304.jpg http://data.motor-talk.de/data/galleries/0/74/8653/8201117/d2-48788.jpg https://kids.greenpeace.de/sites/kids.greenpeace.de/files/Wasserhahn_0.jpg http://www.zvg-dieburg.de/typo3temp/pics/7d3435b383.jpg

Einführung - Gefahren

- Komponenten werden als normale Pc's behandelt
 - Kritische Infrastruktur "darf" meistens nicht gepatcht werden
 - Laufzeiten von teilweise >= 10-20 Jahren
- Häufig direkte Anbindung an das Internet
- Bei der Entwicklung wurde selten auf Sicherheit geachtet
- "Layer-8 Problem" (Benutzerebene)
 - Einfache Kennwörter z.B. 1234

Konventionelle Angriffe auf Scada/ICS

- Infizierung von wichtigen System, z.B.
 Arbeitsstation vom Operator
 - Direkter Zugriff auf Code, Passwörter und/oder Informationen
 - Schwer einzudämmen
- Infizierung von eigentlich nicht relevanten
 System, z.B. Arbeitsstationen von Mitarbeitern
 - System kann als "Hilfsmittel" zum Ziel verwendet werden
 - Social Engineering

Siemens S7-300*:

- Bekanntes Beispiel "Stuxnet"
 - Urananreicherung wurde verhindert
 - Zentrifugen wurden zerstört
 - Manipulationen der angezeigten Werten
- Zugangsdaten wurden fest eingebrannt
 - Weitere Manipulation möglich
 - Ab- und Anschalten von CPU

*Firmwareversion 2.3.4.

Beckhoff CX5020:

- Mini-Computer
 - Tastatur und Maus über USB
 - Monitoranschluss (DVI)
 - 2 Netzwerkanschlüsse
- Auslieferungszustand
 - Windows CE
 - ohne Kennwort (Administrator)
 - keine Firewall aktiv

Beckhoff CX5020:

Port Scan mit nmap

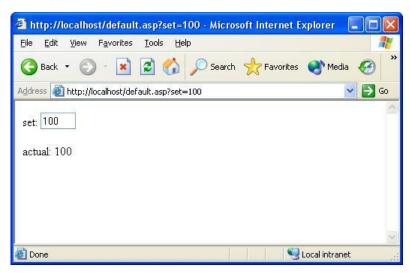
TCP

PORT	STATE	SERVICE
21/tcp	open	ftp
23/tcp	open	telnet
80/tcp	open	http
139/tcp	open	netb1os-ssn?
443/tcp	open	tcpwrapped
445/tcp	open	netbios-ssn
987/tcp	open	unknown
5120/tcp	open	http
5357/tcp	open	http
8080/tep	open	http proxy
48898/tcp	open	tcpwrapped

UDP

PORT	STATE	SERVICE
123/udp	open	ntp
137/udp	open	netbios-ns
138/udp	open filtered	netbios-dgm
161/udp	open filtered	snmp
1900/udp	open filtered	upnp
48899/udp	open filtered	unknown

Dienen zur Programmierung via TwinCAT



Beckhoff CX5020:

- Nutzungskonzept (beispielhaft)
 - Programmierung der SPS von einem Computer aus mit TwinCAT

Webserver zur Steuerung/Überwachung der

Prozesse/Sensorwerte

Quelle: http://infosys.beckhoff.com/index.php?content=../content/1031/tcscriptdll/html/tcscriptdll_sample03.htm&id=

Beckhoff CX5020:

- Absicherungsmaßnahmen
 - Kennwort setzen
 - Firewall einschalten

- Comfort vs. Sicherheit
 - Webserver weiterhin erreichbar
 - Ports zur Programmierung noch erreichbar

Beckhoff CX5020:

- Gefahren
 - Single User System
 - Alle Prozesse laufen als Administrator (Windows CE)
 - Keine Verschlüsselung verwendet
 - Angreifbarkeit der Dienste hinter den offenen Ports
 - Webserver → Buffer overflow?
 - TwinCAT → unbekanntes Protokoll?

Gegenmaßnahmen

- Passwörter sinnvoll wählen
- Patchen
- Audits
- Verwenden von Subnetzen:
 - Bildung von Zonen
 - IPS (spezielle und allgemeine)
- VERWENDUNG VON VPNs!
- Absicherung/Authentifizierung von Feldbusen*

* Implementierungsmöglichkeit durch Hersteller muss gegeben sein

Hindernisse

- Patch Management
 - Ausfallzeiten oft teuer und/oder unmöglich
 - Unverträglichkeit von Software/Patchs
- Tests und Audits nur "im Labor"
 - Absturz kann schwere Folgen haben
- Schwache Hardware
 - Abarbeitung von Code oft auf dedizierter Hardware
- Betriebssysteme
 - Veraltet und nicht für Sicherheit ausgelegt

Forensische Möglichkeiten

- Betriebssystem von Flash Speicher gelesen
 - Wear Leveling
 - Unterschiedliche Controller / Hersteller
- Ramdisk zur Ausführungszeit
 - Wird beim Herunterfahren geschrieben
- Forensik-Tools zur Live-Response unter CE nicht lauffähig?

Vielen Dank für Ihre Aufmerksamkeit!

Gibt es Fragen?

Kontakt:

BenediktPaffen@alumni.fh-aachen.de GregorBonney@alumni.fh-aachen.de