Sicheres Löschen von Mobiltelefonen

Hans Höfken Lehrgebiet Datennetze, IT-Sicherheit und IT-Forensik

Agenda

- Sicheres Löschen, warum?
- Speichertypen im Mobiltelefon
- Speicherarten
- Speicherorte im Mobiltelefon
- Wie kann man Telefone löschen
- Untersuchung und deren Ergebnisse
- Die eigene Android App SecureErase

Sicheres Löschen, warum?

 Smartphone wird für viele tägliche Aktionen eingesetzt

- Email
- Termine
- Dokumente lesen
- Surfen
- Navigieren
- Spielen/Freizeit
- SMS
- Verbindung zum Firmennetz
- ach ja, telefonieren

Daten auf einem Mobiltelefon

- Korrespondenz
 - Freunde, Bekannte, Kollegen, Bilder, Dokumente ...
- Personen, (private) Treffen, Arbeitsthemen, Orte
- Bücher, private/geschäftliche Dokumente
- Interessen, Filme, Bilder
- Orte, Ziele, Aufenthalte
 - Bluetooth: z.B. in welchem Auto habe ich gesessen
- Freizeitinteressen
- Firmenverbindung, Passworte, IP Adressen
- Telefonbuch, Kontakte

Speichetypen NAND

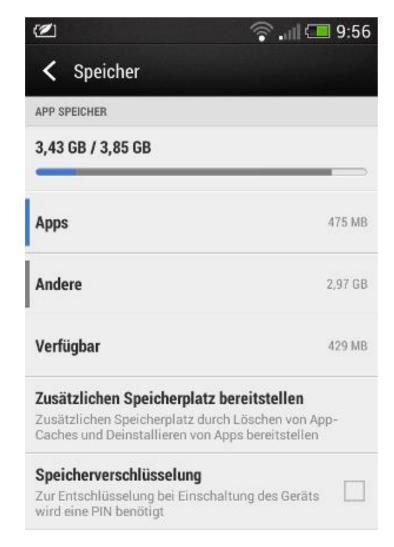
- Typen von Speicherbausteinen (NAND/NOR)
 - NAND Vorteile
 - Hohe Speicherkapazität und sehr geringer Preis pro Megabyte
 - Hohe Schreib- und Lesegeschwindigkeiten bei großen Datenmengen
 - Niedrigere Leistungsaufnahme während der Programmierung
 - Kostengünstige Ankoppelung an Controllersysteme
 - NAND Nachteile
 - Verglichen mit NOR-Speichern ist ein nicht unerheblicher
 Softwareaufwand erforderlich, um NAND-Speicher korrekt anzusteuern
 - Aufgrund der verwendeten Zugriffsart können NAND-Speicher nicht direkt als Programmspeicher für Mikrocontroller eingesetzt werden
 - 100.000 bis 1.000.000 Schreib-Lösch-Zyklen bei *SLC*, danach ist der Speicher nicht mehr nutzbar.
 - 3.000 bis 10.000 Schreib-Lösch-Zyklen bei *MLC*, danach ist der Speicher nicht mehr nutzbar.

Speichertypen NOR

- Typen von Speicherbausteinen (NAND/NOR)
 - NOR Vorteile
 - linear adressierbarer Speicher, ermöglicht Ausführung von Code
 - hohe Schreibgeschwindigkeit bei kleinen Datenmengen
 - problemlose Ankopplung an Controllersysteme aufgrund des SRAMähnlichen Bussystems
 - NOR Nachteile
 - relativ hohe Leistungsaufnahme
 - langsam beim Schreiben und Löschen großer Datenmengen
 - nur für relativ kleine Speicherkapazitäten erhältlich

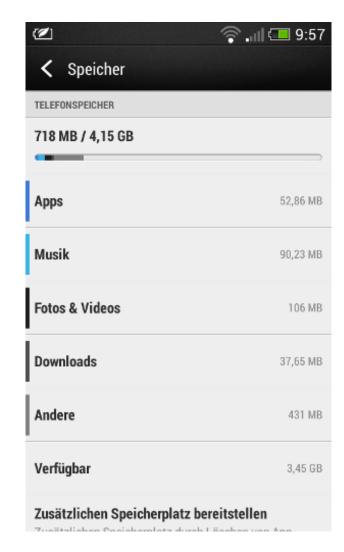
Wear-Leveling

- Kombination aus Verfahren und Mechanismen um die Lebensdauer von Flash-Speicher zu verlängern
 - Statisches Verfahren
 - neue Daten werden auf jeweils anderen freigegebenen Blöcke geschrieben
 - Vorgang ist transparent und benötigt keine Software oder Treiber
 - LRU Mechanismus
 - am wenigsten verwendet Blöcke werden als nächstes beschrieben
- Statisches Verfahren + LRU sorgen für gleichmäßige Abnutzung des Flash-Speichers

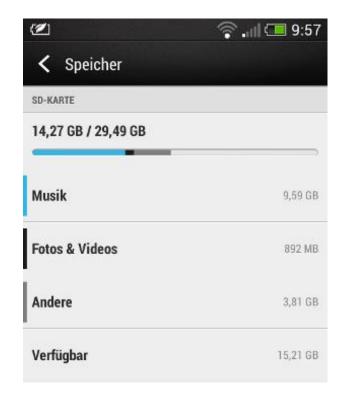


Speicherorte im Mobiltelefon

Interner Speicher


- App-Speicher, wird nur von Applikationen verwendet
- kein direkter Benutzerzugriff
- fest im Telefon verbaut

Speicherorte im Mobiltelefon


- Telefonspeicher
 - fest im Telefon verbaut
 - frei zugänglich für Anwendungen und Nutzer (schreiben, löschen)

Speicherorte im Mobiltelefon

- Externer Speicher
 - eingesetzte Speicherkarte (SD)
 - vom Benutzer schreib- und lesbar

Beispiel Android

 Smartphone-Speicher ist in verschiedene Partitionen eingeteilt.

```
rootfs / rootfs ro, relatime 0 0
 2
      tmpfs /dev tmpfs rw,nosuid,relatime,mode=755 0 0
 3
      devpts /dev/pts devpts rw, relatime, mode=600 0 0
      none /dev/cpuctl cgroup rw, relatime, cpu 0 0
 5
      none /dev/timer group cgroup rw, relatime, timer slack 0 0
      proc /proc proc rw, relatime 0 0
      sysfs /sys sysfs rw, relatime 0 0
 8
      none /acct cgroup rw, relatime, cpuacct 0 0
 9
      tmpfs /mnt/secure tmpfs rw, relatime, mode=700 0 0
      tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 0
10
11
      /dev/block/mmcblk0p33 /system ext4 ro,noatime,data=ordered 0 0
12
      /dev/block/mmcblk0p35 /data ext4 rw,nosuid,nodev,noatime,discard,noauto da alloc
13
      DxDrmServerIpc /data/DxDrm/fuse fuse.DxDrmServerIpc rw,nosuid,nodev,relatime
14
      /dev/block/mmcblk0p34 /cache ext4 rw,nosuid,nodev,noatime,data=ordered 0 0
15
      /dev/block/mmcblk0p25 /devlog ext4 rw,nosuid,nodev,noatime,errors=continue
16
      /dev/block/mmcblk0p16 /firmware radio vfat ro, relatime, fmask=0000, dmask=0000
17
      /dev/block/mmcblk0p17 /firmware q6 vfat ro,relatime,fmask=0000,dmask=0000
18
      /dev/block/vold/179:36 /storage/sdcard0 vfat rw,nosuid,nodev,noexec,relatime
19
      tmpfs /storage/sdcard0/.android secure tmpfs ro,relatime,size=0k,mode=000 0 0
20
      /dev/block/vold/179:65 /storage/sdcard0/ext sd vfat rw,dirsync,nosuid,nodev,noexec
```


Beispiel Android

Partitionen von Anwendungs- und Cachedaten

Partition	Einhängepunkt	Funktion	Attribute
11	/system	System- und Betriebs- systemdaten	-Lesen -Schreiben
12	/data	Anwendungs- und Be- nutzerdaten	-Lesen -Schreiben
14	/cache	Cache einzelner Anwendungen	-Lesen -Schreiben
18	/storage/sdcard0	Telefonspeicher	+Lesen +Schreiben
20	/storage/sdcard0/ext_sd	Externe SD-Karte	+Lesen +Schreiben

Beispiel Einhängepunkte vom HTC One

Mögliche Löschverfahren

- Normales Löschen
- Factory-Reset
 - löscht die Partitionen /data und /cache
 - zusätzliche Option
 - Alle Daten löschen löscht auch den Telefonspeicher
 - SD-Karte löschen löscht externen Speicher
- Uberschreiben (endlose Videoaufnahme)
- Kommerzielle Lösungen

Verwendete Auslesewerkzeuge

Auslese-Software

Name	Hersteller	Version
UFED 4PC	Cellebrite Ltd.	3.0.7.63
Mobile Forensic System XRY	Micro Systemation AB	6.10.1
Android Debug Bridge (ADB)	Google Inc.	1.0.31
Convert and copy a file (dd)	Open Source	8.13

Analyse-Software

Name	Hersteller	Version
UFED Physical Analyzer	Cellebrite Ltd.	3.9.7
XRY Physical	Micro Systemation AB	6.10.1
Internet Evidence Finder	Magnet Forensics Inc.	6.3
Testdisk und PhotoRec	CG Security	6.14
Phone Image Carver	GetData Pty Ltd.	1.6.0.16

Testgeräte

Android 4.1.2

Samsung GT-i9023

Android 4.2.2

HTC One SV

Android 4.0.3

Sony **ST-25i**

iOS 7.1

Apple iPhone 4S

OS 5

Blackberry **Curve 8520**

Anfangszustand aller Testgeräte

- 200 Kontakte (597 Telefonbucheinträge)
- 185 SMS
- 60 Anruflisteneinträge
- 800 Bilder (je 5-50 kB)
- 70 Audiodateien (MP3-Daten, je 4-12 MB)

Testdurchführung

- Image erstellen (1-zu-1 Kopie)
 - Feststellen, dass der Anfangszustand vorhanden ist
- Löschen des Mobiltelefons
- Erneute Untersuchung des Mobiltelefons

Ergebnisse – 1. Normales Löschen

- Kontakte:
 - /data/data/databases/com.android.providers.contacts/contacts2.db
- Anrufliste:
 - /data/data/databases/com.android.providers.contacts/calls.db
- SMS:
 - /data/data/databases/com.android.providers.telephony/mmssms.db
- Gelöschte Einträge werden nur als "gelöscht" markiert und der Speicher wird freigegeben, Daten noch da
- Das gleiche gilt für das Löschen von Bildern und anderen Dateien

Ergebnisse – 2. Factory Reset (1)

Samsung GT-i9023

Benötigte Zeit	24 Minuten		
Daten	Vor dem Reset	Nach dem Reset	
Telefonbucheinträge	597	0	
SMS	185	0	
Anrufliste	60	0	
Bilder	800	791	
Audio	70	70	

9 gelöschte Bilder wurden vom Betriebssystem überschrieben

Ergebnisse – 2. Factory Reset (2)

HTC One SV

Benötigte Zeit	35 Minuten		
Daten	Vor dem Reset	Nach dem Reset	
Telefonbucheinträge	597	0	
SMS	185	0	
Anrufliste	60	0	
Bilder	800	794	
Audio	70	68	

6 gelöschte Bilder und 2 Audiodateien wurden vom Betriebssystem überschrieben

Ergebnisse – 2. Factory Reset (3)

Sony ST-25i

Benötigte Zeit	15 Minuten		
Daten	Vor dem Reset	Nach dem Reset	
Telefonbucheinträge	597	299	
SMS	185	0	
Anrufliste	60	0	
Bilder	800	779	
Audio	70	69	

Ergebnisse – 2. Factory Reset (4)

Apple iPhone 4S

Benötigte Zeit	57 Minuten	
Daten	Vor dem Reset	Nach dem Reset
Telefonbucheinträge	597	0
SMS	185	0
Anrufliste	60	0
Bilder	800	0
Audio	70	0

Ergebnisse – 2. Factory Reset (5)

Blackberry Curve 8520

Benötigte Zeit	23 Minuten		
Daten	Vor dem Reset	Nach "Secure Wipe"	
Telefonbucheinträge	597	0	
SMS	185	0	
Anrufliste	60	0	
Bilder	50	0	
Audio	1	0	

Ab Betriebssystemversion 5.0+ Löschfunktion Secure Wipe

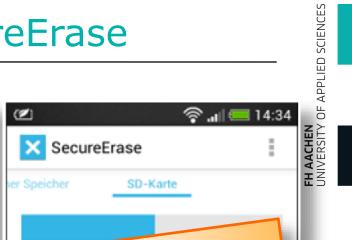
3. Löschen durch Aufnahme von Videos

- Zuerst muss ein Factory Reset durchgeführt werden
 - der gesamte Speicher muss freigegeben sein
- Kamera hat nicht immer die Berechtigung uf den internen und den Telefore en
 - herg
- Es konnten alle Daten gelöscht werden **16GB**

For	elosciii	Dauer
240p	320x240	487,11 Minuten
320p	480x320	162,33 Minuten
480p	640x480	46,61 Minuten
720p	1280x720	13,20 Minuten
1080p	1920x1080	7,95 Minuten

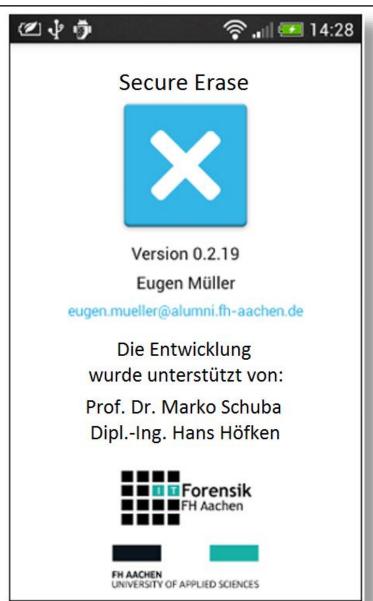
Kommerzielle Lösungen für Android

- Secure Wipe
 - die Daten konnten wiederhergestellt werden
- Nuke My Device
 - abgestürzt ohne Fehlermeldung
- iSchredder Pro
 - mehrmaliges Überschreiben (Auswahl)
 - Daten konnten größten Teils wieder hergestellt werden


Alle diese Produkte haben leider kein einziges positives Ergebnis gebracht.

Eigene Lösung - SecureErase

- getestet mit Android 4.0.3+ ("Ice Cream Sandwich")
- Keine Root-Rechte
- Die Partition kann ausgewählt werden
 - interner und externer Speicher
- Schreibblockgröße kann ausgewählt werden
- Die Anwendung ist absturzsicher


Eigene Lösung - SecureErase

Eigene Lösung - SecureErase

Download unter

www.it-forensik.fh-aachen.de

im Projektbereich

Vielen Dank für Ihre Aufmerksamkeit

