Forensik von DSL-Routern

Sebastian Braun, B.Sc.

Person

Abschluss B.Sc. Ende Februar 2015

Titel der Bachelorarbeit:

"Systemanalyse von DSL-Routern als Grundlage einer forensischen Untersuchung"

Kooperation mit dem LKA NRW

Person

Seit Mai 2015: Consultant für IT-Forensik, IT-Audit und eDiscovery bei Warth & Klein Grant Thornton

Gliederung

- Motivation
- Ziel
- Der DSL-Router
- Vorgehensweise
- Best Practice
- Fazit
- Ausblick

Motivation

- DSL-Router Anbindung an das Internet
- Nutzung des Internets in privaten Haushalten nimmt zu
 - 2013 80%
- Steigende Anzahl internetfähiger Geräte
 - PC, Smartphone, Tablet, Smart-TV...
- Moderne DSL-Router verarbeiten viele sensible Daten
 - Verbundene Geräte, DECT-Basisstation, VoIP-Funktion

Ziel

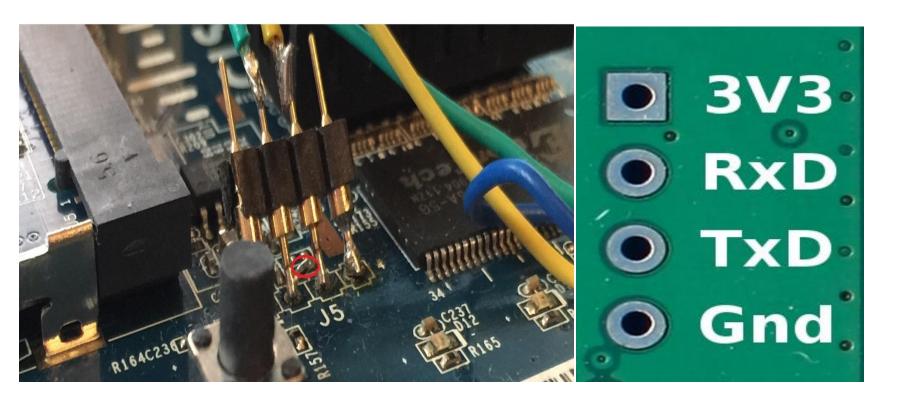
- Forensische Untersuchung des DSL-Routers
- Möglichkeiten zur Untersuchung und Sicherung des Systems mit Hilfe der gegebenen Komponenten
 - Was für Komponenten sind vorhanden?
 - Welche Möglichkeiten ergeben sich?
 - Was kann gesichert werden?
 - Wie kann es gesichert werden?

Der DSL-Router

- Eingebettetes System
 - Bestandteil eines technischen Systems
 - Funktionsumfang auf Nutzen reduziert
 - Betriebssystem mit eingeschränkten Funktionen
 - Mögliche Funktionen sind herstellerspezifisch
- Relevante Hardwarekomponenten
 - System-on-a-Chip
 - Arbeitsspeicher
 - Flash-Speicher

Der DSL-Router

- Relevante Softwarekomponenten
 - Bootloader
 - Betriebssystem


- Kommunikationsmöglichkeiten
 - Telnet
 - UART-Schnittstelle

Vorgehensweise

- Vorbereitung der DSL-Router
- Forensische Möglichkeiten des Betriebssystems
- Forensische Möglichkeiten des Bootloaders
- Hardwarebasierte Möglichkeiten

Vorbereitung der DSL-Router

- Lokalisierung und Kontaktierung der UART-Schnittstelle
 - Muss teilweise erst aktiviert werden

Betriebssystemmöglichkeiten

- In der Regel Embedded Linux
- Untersuchung mittels Shell (falls vorhanden)
 - Login benötigt?
 - Aktivierung mittels "sh"-Befehl nötig?
 - Ohne Shell Untersuchung nicht möglich
- Informationserhalt aus bestimmten Dateien
 - /proc/mtd
 - /proc/meminfo
- Überprüfung vorhandener Befehle
- Sichern flüchtiger Systemdaten

Betriebssystemmöglichkeiten

```
# cat /proc/mtd

dev: size erasesize name

mtd0: 00400000 00020000 "reserved-kernel"

mtd1: 03000000 00020000 "reserved-filesystem"

mtd2: 00400000 00020000 "kernel"

mtd3: 03000000 00020000 "filesystem"

mtd4: 00200000 00020000 "config"

mtd5: 01600000 00020000 "nand-filesystem"

mtd6: 00040000 00001000 "urlader"

mtd7: 00060000 00001000 "tffs (1)"

mtd8: 00060000 00001000 "tffs (2)"
```

```
# cat /proc/meminfo
MemTotal: 114976 kB
```

Unix-Tool dd

- Externes Speichermedium und Shell notwendig
 - Shell muss dd unterstützen
- Syntax: dd if=INPUT of=OUTPUT
- Erzeugt bitgenaue Kopie der Quelle und speichert diese am angegebenen Ort
- Arbeitsspeicher kann gesichert werden

```
# dd if=/dev/mtd0 of=/var/media/ftp/Kingston-DTRubber3-0-01/mtd0.dd
8192+0 records in
8192+0 records out
```

Bootloadermöglichkeiten

- Teilweise Userinterface zur Verfügung gestellt
 - Bootvorgang muss unterbrochen werden
 - Evtl. Passwort notwendig
 - Welche Befehle stehen zur Verfügung?
- Evtl. stellt das Bootloaderuserinterface einen Befehl zur byteweisen Ausgabe des Speichers auf der Konsole zur Verfügung
- Ausgabe muss geparst und in eine Datei geleitet werden

Bootloadermöglichkeiten

- Problem: Startadresse muss bekannt sein
- brntool.py automatisiert dies

Hardwaremöglichkeiten - JTAG

- Eigentlich Schnittstelle zum Testen von Hardware
 - z.B.: CPU
- Flash-Speicher ist mit der CPU verbunden
- Über CPU kann der Flash-Speicher ausgelesen werden
- Kenntnis über verwendete CPU notwendig

Hardwaremöglichkeiten - Chip-Off

- Entfernen des Flash-Speichers aus dem Router und Auslesen mittels spezieller Hard- und Software
- Flash-Speicher kann beim Vorgang zerstört werden
- Zusammensetzen der Daten aufgrund von Wear-Leveling problematisch

Best Practice

- Kontaktierung der UART-Schnittstelle
- Betriebssystemmöglichkeiten
- Bootloadermöglichkeiten
- JTAG
- Chip-Off

Fazit

- Viele verschiedene Hersteller und viele verschiedene Spezifikationen gestalten eine allgemeine Lösung als äußerst schwierig
 - Shell mit nötigen Befehlen vorhanden?
 - Shell geschützt?
 - Bootloaderuserinterface?
 - Firmwareupdate
- Shell häufig verfügbar, dd selten unterstützt
- Sicherung mittels Bootloaderinterface am häufigsten unterstützt, jedoch gehen flüchtige Daten verloren

Ausblick

- Sicherungen untersuchen und darin enthaltene Daten verfügbar machen
- Interpretation der Sicherungen
- Entwicklung eines Tools zur automatisierten Sicherung/Analyse

Ende

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

Kontakt: sebastian.braun03@gmail.com