

Konzept zur Sicherheitsüberprüfung von Industrial Control Systems

Denise Uerlings Lehrgebiet Datennetze, IT-Sicherheit und IT-Forensik

Gliederung

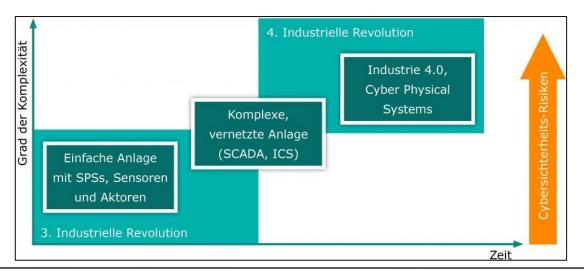
- Thema der Bachelorthesis
- Problemstellung
- Vorgehensweise
- Erste Ergebnisse

Thema der Bachelorthesis

- Vergleich Office-IT und industriellen Penetrationstests
- Abweichende Ausgangslage in der Industrie
 - Dauerbetrieb der Systeme
 - Vermeidung von Ausfallzeiten

Sensible Systeme: empfindlich gegenüber Scans

Thema der Bachelorthesis


- Unterschiede der Vorgehensweisen
- Konzeptentwicklung für Penetrationstests von industriellen Steuerungssystemen (ICS)

Thema der Bachelorthesis

- Industrielle Steuerungssysteme:
 - messen, steuern und regeln Abläufe in produzierender **Industrie**
 - früher: von anderen IT-Systemen & Netzen entkoppelt
 - heute: fortschreitende Vernetzung von ICS-Systemen mit klassischer Office-IT (Industrie 4.0)
 - Mehr Gefährdungen für Systeme

Problemstellung

- Angriffe auf kritische Infrastrukturen
 - Gefährdung der Grundversorgung der Bevölkerung
- Angriffe auf produzierende Industrie
 - wirtschaftliche Schäden, Imageschäden, Umweltschäden, Menschenleben

Fazit:

Überprüfung und Sicherheit von industriellen Anlagen spielt eine große und wichtige Rolle!

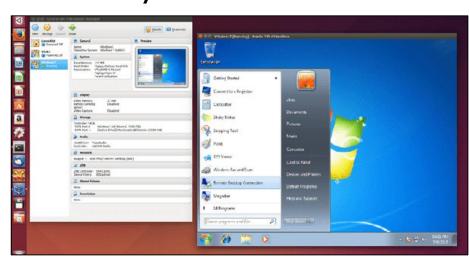
Vorgehensweise

- Begleitung und Durchführung von Office-IT Pentests
- Begleitung und Durchführung von Pentests im industriellen Umfeld
- Recherche/Austausch mit Unternehmen

- Ziel: maximale Pentest Ergebnisse bei minimalem Risiko für Anlagenverfügbarkeit
- Einige Tools von Office-IT Pentest auch bei OT*
 Pentests einsetzbar aber in Funktionen beschränken
- Grundsätzlich: keine Pentests im produktiven Betrieb außer explizit gewünscht
 - Gilt auch für Forensik
- Unterschiedliches Vorgehen im produktiven und nicht produktiven Betrieb

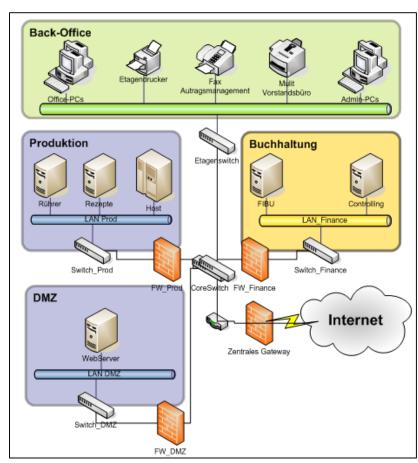
OT = Operational Technology

Hard- und Software, mit denen Leistungen physischer Geräte, Maschinen, Anlagen überwacht, kontrolliert und gesteuert werden

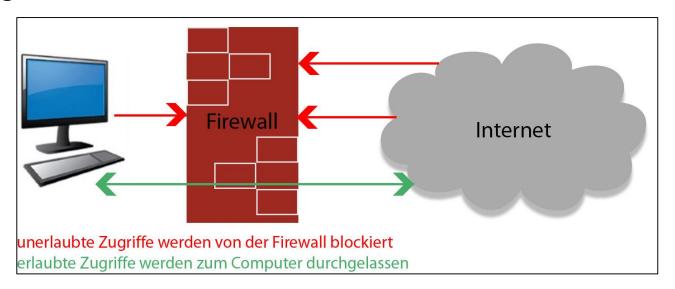

Pentests im nicht produktiven Betrieb:

- Testen während Wartungsintervallen
- Pentests in Test- oder Standbyumgebung

Clonen und Pentesten einzelner Systeme für


Testzwecke z.B.

- einzelne PCs
- Steuerungskomponenten
- Netzwerkkomponenten inkl. der realen Konfiguration



- Theoretische Analyse der Architektur
 - → Dokumentation
 - Welche Systeme haben welche Funktion
 - Konfiguration der Systeme
 - Was sind potentielle Angriffsvektoren
 - Wie kommt man weiter im System/Netz

- Dokumentation überprüfen
 - z.B. Anlagen ablaufen
 - stimmt Dokumentation mit Realität überein
- Netzwerksegmentierung/Firewall-Regeln
 - sind Firewall-Regelwerke von IT und OT aufeinander abgestimmt

Pentests im produktiven Betrieb:

- Testen mit äußerster Vorsicht
- Genaue Absprache mit Kunden
 - Miteinbeziehung der Kunden in Testvorgehen
 - z.B. Risikobetrachtung zusammen mit Kunden

- Überprüfung der Netzübergänge
 - Absicherung der Systeme nach außen
 - Fokus auf Systeme die Schnittstelle zum Office Netzwerk
 & dadurch Richtung Internet verfügbar sind
 (z.B. HMI Windows Rechner mit WinCC)
- Passive Tools (Sniffen des Datenverkehrs)

No.	Time	Source	Destination	Protocol Le	ngth Info
	12 2.578886	192.168.171.139	192.168.171.182	TCP	74 37993-502 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=30
	13 2.579125	192.168.171.182	192, 168, 171, 139	TCP	74 502-37993 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK PERM
	14 2,579305	192.168.171.139	192.168.171.182	TCP	66 37993-502 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=30585126 TSecr=19
	16 2.579680	192.168.171.182	192.168.171.139	TCP	66 502-37993 [ACK] Seq=1 Ack=13 Win=29056 Len=0 TSval=19061180 TSecr=3
	17 2.587010	192.168.171.182	192.168.171.139	Modbus/TC	78 Response: Trans: 64795; Unit: 1, Func: 6: Write Single Register
	18 2.587334	192.168.171.139	192.168.171.182	TCP	66 37993-502 (ACK) Seg=13 Ack=13 Win=29312 Len=0 TSval=30585127 TSecr=
	19 2.587749	192.168.171.139	192.168.171.182	TCP	66 37993-502 [FIN, ACK] Seq=13 Ack=13 Win=29312 Len=0 TSval=30585128 T
	26 2,591935	192.168.171.182	192, 168, 171, 139	TCP	66 502-37993 [FIN, ACK] Seq=13 Ack=14 Win=29056 Len=0 TSval=19061183 T
	27 2.592284	192.168.171.139	192.168.171.182	TCP	66 37993-502 [ACK] Seq=14 Ack=14 Win=29312 Len=0 TSval=30585129 TSecr=
Into	ernet Protoco nsmission Con bus/TCP	ol Version 4, Src: 192 strol Protocol, Src Po	:0c:29:e1:12:81), Dst: Vmws .168.171.139 (192.168.171.1 rt: 37993 (37993), Ost Port	39), Dst: 192.168	. 171. 182 (192. 168. 171. 182)
Into Tra Mod	ernet Protoco nsmission Com bus/TCP ransaction Id rotocol Ident ength: 6	ol Version 4, Src: 192 itrol Protocol, Src Po dentifier: 64795 tifier: 0	.168.171.139 (192.168.171.	39), Dst: 192.168	. 171. 182 (192. 168. 171. 182)
D Into	ernet Protoco nsmission Con bus/TCP ransaction Ident rotocol Ident ength: 6 nit Identifie	ol Version 4, Src: 192 itrol Protocol, Src Po dentifier: 64795 tifier: 0	.168.171.139 (192.168.171.	39), Dst: 192.168	. 171. 182 (192. 168. 171. 182)
Into Train Mod	ernet Protoco nsmission Con bus/TCP ransaction Ident rotocol Ident ength: 6 nit Identifie bus	ol Version 4, Src: 192 itrol Protocol, Src Po dentifier: 64795 tifier: 0 er: 1 Write Single Registe	.168.171.139 (192.168.171.: rt: 37993 (37993), Ost Port	39), Dst: 192.168	. 171. 182 (192. 168. 171. 182)
D Into	ernet Protoco nsmission Con bus/TCP ransaction Ic rotocol Ident ength: 6 nit Identifie bus unction Code:	ol Version 4, Src: 192 itrol Protocol, Src Po dentifier: 64795 tifier: 0 er: 1 Write Single Registe	.168.171.139 (192.168.171.: rt: 37993 (37993), Ost Port	(39), Dst: 192.168 :: 502 (502), Seq:	. 171. 182 (192. 168. 171. 182)
D Into Trace Mode To P L U U P Mode F R D D D D D D D D D D D D D D D D D D	ernet Protoco nsmission Con bus/TCP ransaction Ic rotocol Ident ength: 6 nit Identifie bus unction Code eference Numb ata: 014d	ol Version 4, Src: 192 trol Protocol, Src Po dentifier: 64795 tifier: 0 er: 1 Write Single Registe ser: 8	.168.171.139 (192.168.171.) rt: 37993 (37993), Ost Port	(39), Dst: 192.168 :: 502 (502), Seq:	. 171. 182 (192. 168. 171. 182)
D Into	ernet Protoco ssmission Con bus/TCP ransaction Ic rotocol Ident ength: 6 nit Identifie bus unction Code: eference Numb ata: 014d	ol Version 4, Src: 192 trol Protocol, Src Po dentifier: 64795 tifier: 0 er: 1 Write Single Registe ber: 8	er (6)	(39), Dst: 192.168 :: 502 (502), Seq:	. 171. 182 (192. 168. 171. 182)

Beispiel eines Wireshark Mitschnitts

HMI = Human Machine Interface

- Enumeration (z.B. nmap) mit angepasster
 Paketrate bzw. Geschwindigkeit verwenden
 - einzelne Systeme/Dienste priorisieren
 - Testen einzelner Dienste ohne Ausnutzung von Schwachstellen die Verfügbarkeit beeinflussen
 - keine automatisierten Schwachstellen Scans
 - vorsichtige Port Scans
 - Exploits im Netz frei verfügbar?
 - Logindaten von Diensten auf Standard-Anmeldeinformationen überprüfen

Vielen Dank für Ihre Aufmerksamkeit!